1 Thermodynamics Research Laboratory, School of Chemical Engineering, Iran University of Science & Technology, Tehran, Iran

2 Young Researchers and Elites Club, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran


In this work, artificial neural network (ANN) has been employed to propose a practical model for predicting the surface tension of multi-component mixtures. In order to develop a reliable model based on the ANN, a comprehensive experimental data set including 15 ternary liquid mixtures at different temperatures was employed. These systems consist of 777 data points generally containing hydrocarbon components. The ANN model has been developed as a function of temperature, critical properties, and acentric factor of the mixture according to conventional corresponding-state models. 80% of the data points were employed for training ANN and the remaining data were utilized for testing the generated model. The average absolute relative deviations (AARD%) of the model for the training set, the testing set, and the total data points were obtained 1.69, 1.86, and 1.72 respectively. Comparing the results with Flory theory, Brok-Bird equation, and group contribution theory has proved the high prediction capability of the attained model.