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Abstract 

In the current work, a framework is presented for amine solvent selection in gas treating process. 

Since the appropriate decision making in this field affects the capital and operational costs, multi 

attribute decision making (MADM) techniques were used to rank alternatives. The determination of 

criteria and alternatives is the most important aspect in the MADM. Criteria were divided into two 

categories, namely physical and process, and twelve physical indexes and nine process indexes were 

detected. Mono-ethanol amine (MEA), di-glycol amine (DGA), di-ethanol amine (DEA), di-

isopropanol amine (DIPA), and methyl di-ethanol amine (MDEA) are intended as alternatives. The 

importance of the criteria was expressed by weights, and the weights were determined by the analytic 

hierarchy process (AHP) method. The traditional Technique for Order Preferences by Similarity to 

an Ideal Solution (TOPSIS) method was applied to the physical criteria with crisp data. The modified 

interval TOPSIS technique was used to study the process criteria with interval data. The data of the 

criteria and alternatives were collected from Ilam Gas Treating Company, and the solution for sour 

gas sweetening was ranked by the proposed approach. Based on our computations, MDEA was 

defined as the best amine solvent with an average ranking of 1.5. 
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1. Introduction 

In the coming decades, the energy demand is expected to grow rapidly (Langè et al., 2015). Natural gas 

is a prime, clean, safe, and most useful form of energy (Kazemi et al., 2016), which has been widely 

used as an industrial and indoor fuel. There are impurities in natural gas which cause serious problems 

such as fouling and corrosion in pipelines, freezing, plugging, and erosion (Al-Lagtah et al., 2015; 

Gutierrez et al., 2016; Muhammad and GadelHak, 2015; Qiu et al., 2014). H2S and CO2 are the major 

impurities in natural gas which must be removed to bring natural gas to the market (Alhseinat et al., 
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2015; Cho et al., 2015). Chemical absorption by alkanol amines, bio scrubber, adsorption, membrane, 

and the oxidation of H2S in an iron-chelate process have been used for the removal of these contaminates 

over years (Ameli Forough, 2012; Tavan et al., 2016). Amine absorption process is the most commonly 

used acid gas removal technology (Niu and Rangaiah, 2014). This process allows acidic gases to be 

dissolved in a solvent and released by regeneration at a later stage (Devold, 2013; Jassim, 2016). Amines 

are some compounds of ammonia (NH3) which have replaced one or more of their hydrogen atoms with 

hydrocarbon groups (Arthur Kidnay, 2006). Depending on the composition and operation conditions of 

the raw gas streams to be treated, aqueous amines are used to meet the sweet gas specifications (Vahid 

Abkhiz, 2014).  

Furthermore, the amines capacity for the absorption of acidic gases is an important characteristic 

(Momeni and Riahi, 2014). Mono-ethanol amine (MEA), di-glycol amine (DGA), di-ethanol amine 

(DEA), di-isopropanol amine (DIPA), and methyl di-ethanol amine (MDEA) are commonly used in the 

natural gas sweetening process (Shokouhi et al., 2015).  

The selection of a suitable amine solution for sweetening depends on the feed condition and process 

objectives (Zahid et al., 2017). It can reduce capital and operating costs while providing more flexibility 

in achieving specific purity requirements. The specification of the required purity with respect to acidic 

gases (CO2 and H2S), equipment sizing, and operating costs are the primary concern in the gas 

sweetening. Amine circulation rate, reboiler/condenser size and duty, and corrosion problems are 

important factors to be considered in the selection of the proper amine. In the amine sweetening unit, 

50 to 70% of the initial investment is related to the magnitude of the solvent circulation rate, and 10 to 

20% of the initial investment is dependent on the regeneration energy requirement. In addition, about 

70% of the operating costs, excluding labor, result from regeneration. Since the selection of the proper 

amine can greatly reduce both the regeneration energy requirement and solution circulation rate, 

choosing the amine or a combination of amines best suited to the conditions can have a dramatic impact 

on the overall costs associated with a sweetening unit (Astarita, 1983; John Polasek, 2006). 

The selection of amine solvent in the process of gas treating is considered to be an important decision 

in gas treating companies. To this end, in the current work, MADM techniques were used for amine 

solvent selection for the first time. In the next section, a summary of MADM relevant literature is 

described. 

2. Relevant literature  

Multi-criteria decision-making (MCDM) is a discipline aimed at supporting decision makers which are 

faced with numerous and conflicting alternatives to make an optimal decision. To achieve this purpose, 

two critical questions should be unlocked: preference structure and weights. MCDM methods have been 

considered in many fields, some of which include economic, social, medical, and technical issues 

(Nădăban et al., 2016). To facilitate systematic research in the field of MCDM, Hwang and Yoon 

suggested that MCDM problems can be classified into two main categories, namely multiple attribute 

decision making (MADM) and multiple objective decision making (MODM), based on the different 

purposes and different data types (Gwo-Hshiung Tzeng and Huang, 2011). Different methods of 

decision analysis are illustrated in Figure 1, among which TOPSIS and AHP methods are highlighted. 



M. Seidi et al. / The Selection of Amine Solvent in Gas Treating Process Considering … 75 

 

 

Figure 1 

Decision analysis methods. 
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The TOPSIS method is currently one of the most frequently used methods for MCDM. Its original 

version was intended for dealing with real-valued data. The Technique for Order Preferences by 

Similarity to an Ideal Solution (TOPSIS) method was proposed by Hwang and Yoon in 1981. The main 

idea came from the concept of the compromise solution to choose the best alternative nearest to the 

positive ideal solution (optimal solution) and the farthest alternative from the negative ideal solution 

(inferior solution); then, the best one of sorting is chosen, which will be the best alternative (Hwang 

and Yoon, 1981). As a practical application of this method, we can address the works of Ansarifar et 

al.(2015), Barros and Wanke (2015), and Chen et al. (2015). 

A new interval type-2 fuzzy multiple-attribute decision making model is developed using TOPSIS and 

decision making trial and evaluation laboratory (DEMATEL) by Baykasoglu et al. (Baykasolu and 

Glck, 2017), Hatami et al. (Hatami-Marbini and Kangi, 2017), and Runik et al. (Rudnik and Kacprzak, 

2017). They have presented a general overview about the development of fuzzy TOPSIS methods. 

Nadaban et al. have also mentioned several works presenting some applications of fuzzy TOPSIS such 

as location problem, supplier selection, and sustainable and renewable energy (Nădăban et al., 2016). 

In this study, for deciding on the amine solvent selection, a systematic decision-making approach was 

proposed. The proposed approach will be explained in the next section. 

3. The proposed approach 

Hierarchical structure creation, calculation of criteria weights by AHP, and selection by TOPSIS are 

three phases of the selection of the amine solvent. The different phases of the proposed approach are 

presented in Figure 2. 

In the first phase, criteria and alternatives are identified using technical information gathered from Ilam 

Gas Treating Company; criteria are divided into two categories: physical and process, and twelve 

physical indexes and nine process indexes are detected. The physical criteria include 1-molecular 

weight, 2-boiling point, 3-freezing point, 4-critical constants, 5-density, 6-weight, 7-relative density, 8-

specific heat, 9-thermal conductivity, 10-latent heat of vaporization, 11-flash point, and 12-toxicity. 

The process criteria are 1-acid gas pickup (m3(GPA)/L at 38 °C), 2-acid gas pickup (mol/mol amine), 

3-lean solution residual acid gas, 4-rich solution acid gas loading, 5-solution concentration, 6-

approximate reboiler heat duty, 7-reboiler temperature, normal operating, 8-heats of reaction, and 9-

absorption. MEA, DEA, DIPA, DGA, and MDEA are intended as alternatives. The decision 

hierarchical structure is depicted in Figure 3. 
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Figure 2 

The proposed approach. 
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Figure 3 

Decision hierarchical structure. 

In the second phase, the weights of the criteria are calculated by the analytic hierarchy process (AHP), 

developed by Thomas L. Saaty in 1980. An advantage of the AHP is that it is designed to handle 

situations in which the subjective judgments of individuals constitute an important part of the decision 

process. Basically, the AHP is a method of (1) breaking down a complex, unstructured situation into its 

component parts; (2) arranging these parts, or variables into a hierarchic order; (3) assigning numerical 

values to subjective judgments on the relative importance of each variable; and (4) synthesizing the 

judgments to determine which variables have the highest priority and should be acted upon to influence 

the outcome of the situation. The major steps of AHP include: 

1. developing a graphical representation of the problem in terms of the overall goal, the criteria, 

and the decision alternatives; 

2. specifying his/her judgments about the relative importance of each criterion in terms of its 

contribution to the achievement of the overall goal; 

3. indicating a preference or priority for each decision alternative in terms of how it contributes 

to each criterion; 

4. using a mathematical process to synthesize the information (including consistency checking) 

and provide a priority ranking of all the alternatives and criteria, given the information on 

relative importance and preferences.  

Finally, in the third phase, alternative ranking is performed. Due to the different quantities of criteria 

(crisp and interval data), ranking procedure is performed twice. At first, amine solvents are ranked by 

the traditional TOPSIS method with the crisp data, and then the alternatives are ranked by the modified 

TOPSIS method with the interval data; ranking average is considered as the final ranking. In the 

following, the traditional and modified TOPSIS methods are presented.  
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3.1. The traditional TOPSIS method with the crisp data 

Suppose that there are n criteria (C1, C2, …, Cn) which are taken into consideration among m alternatives 

(A1, A2, …, An) in an MCDM problem. Let 
ijx  be the performance of the alternative i at the criterion j. 

The basic principle of the TOPSIS method is that the best alternative should have the shortest distance 

from the ideal solution and the farthest distance from the negative-ideal solution. Its procedure is given 

below: 

1. Calculate the normalized value
ijn . 
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2. Calculate the weighted normalized value
ijv . 

, ,ij j ijv w n i I j J      (2) 

where, 
jw  is the weight of the thj criterion. 

3. Determine the positive-ideal solution A  and the negative-ideal solution A . 
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where, SB and SC denote the set of benefit criteria and the set of cost criteria respectively. 

4. Calculate Euclidean distance. 
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5. Calculate the relative closeness to the ideal solution. 
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6. Rank the preference order. 

For ranking, we can choose the best alternative with the maximum value of the relative closeness. 

According to the other works (Khezerloo et al., 2011; Levin, 2004; Sevastianov, 2007), the modified 

TOPSIS method with the interval data is described. 
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3.2. Modified TOPSIS method with interval data 

1. Calculate the normalized interval value 
(1) (1) (1),l u

ij ij ijN n n    as given below: 
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2. Calculate the weighted normalized interval data ,l u

ij ij ijV v v     defined by: 

l l

ij j ijv w n  (10) 

u u

ij j ijv w n  (11) 

3. Identify the positive ideal solution 
(1)A and the negative ideal solution 

(1)A as follows: 
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4. Calculate the Euclidean distance. 
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5. Calculate the relative closeness Cli as reads: 
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4. Case Study: Ilam Gas Treating Company 

The amine solvent selection in Ilam Gas Treating Company (IGTC) is performed using the proposed 

approach. The flow sheet of the plant is presented in Figure 4, and the composition and feed condition 

of the plant is tabulated in Table 1 

 

Figure 4 

Amine gas sweetening flow sheet. 

Table 1 

Amine gas sweetening feed composition and conditions. 

Feed composition 

Component Molar fraction Component Molar fraction 

H2O 0 i-Pentane 2.09×10-3 

Nitrogen 1.29×10-3 n-Butane 6.16×10-3 

H2S 3.25×10-2 i-Butane 4.37×10-3 

CO2 3.74×10-2 Propane 2.30×10-2 

MDEA 0 Ethane 5.51×10-2 

Piperazine 0 Methane 0.831679 

n-Octane 9.94×10-4 diM-Sulfide 1.26×10-4 

n-Heptane 5.96×10-4 E-Mercaptan 2.78×10-5 

n-Hexane 1.29×10-3 M-Mercaptan 1.30×10-3 

n-Pentane 2.09×10-3 COS 2.29×10-5 
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Feed flow rate and condition 

Stream name 1 

Vapor / Phase Fraction 1 

Temperature (°C) 18.3 

Pressure (barg) 76 

Molar flow (kg mol/hr.) 6157.338 

Mass flow (kg/hr.) 123593.3 

Standard ideal LiqVol flow 

(m3/hr.) 
351.4239 

Molar enthalpy (kJ/kg mol) -89327.4 

Molar entropy (kJ/kg mol.°C) -124.918 

Heat flow (kJ/hr.) -5.5×10+8 

LiqVol flow in standard 

conditions (m3/hr.) 
921.7805 

The crisp and interval data about the physical and process criteria are listed in Tables 2 and 3. 

Table 2 

Physical criteria of the crisp data. 

Alternatives 

(Amine 

solvent) 

Physical criteria 

Molecular 

weight 

Boiling 

point Freezing 

point 

(°C) 

Critical 

constants 

Density 
Weight 

(kg/m3) 

Relative 

density 

Specific 

heat 

Thermal 

conductivity 

Latent heat 

of 

vaporization 

(kJ/kg) 

Flash 

point 

Toxicity 

760 mm 

Hg (°C) 

Pressure 

(kPa) 

(abs) 

LC50 

MEA 61.08 170.5 10.5 5985 1.018 1016 1.0179 2.55 0.256 826 93 206 

DEA 105.14 269 28 3273 1.095 1089 1.0919 2.51 0.22 670 138 837 

DIPA 133.19 248.7 42 3770 0.999 1080 0.989 2.89 0.002 430 124 580 

DGA 105.14 221 -12.5 3772 1.058 1057 1.0572 2.39 0.209 510 127 460 

MDEA 119.16 247 -23 2761.36 1.04 1040 1.0418 2.24 0.275 476 127 250 

Table 3 

Process criteria of the interval data. 

Alternatives 

(Amine 

solvent) 

Process criteria 

C1 C2 C3 C4 C5 C6 C7 C8 C9 

1

l

ix  
1

u

ix  2

l

ix  2

u

ix  
3

l

ix  
3

u

ix  4

l

ix  4

u

ix  
5

l

ix  
5

u

ix  6

l

ix  6

u

ix  7

l

ix  7

u

ix  
8

l

ix  
8

u

ix  9

l

ix  9

u

ix  

MEA 0.023 0.032 0.33 0.4 0.12 0.12 0.45 0.52 15 25 280 335 107 127 1280 1560 1445 1630 

DEA 0.0285 0.0375 0.35 0.65 0.08 0.08 0.43 0.73 25 35 245 280 110 121 1160 1400 1350 1515 

DIPA 0.05 0.0585 0.72 1.02 0.08 0.08 0.8 1.1 25 30 245 280 110 121 1190 1190 1520 1520 

DGA 0.035 0.0495 0.25 0.3 0.1 0.1 0.35 0.4 50 70 300 360 121 127 1570 1570 2000 2000 

MDEA 0.022 0.056 0.2 0.55 0.005 0.01 0.4 0.55 40 50 220 335 121 127 1040 1210 1325 1390 

The normalized values of the data are calculated in Tables 4 and 5.  
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Table 4 

Normalized value of the crisp data. 

Alternatives 

(Amine 

solvent) 

Physical criteria 

Molecular 

weight 

Boiling 

point Freezing 

point 

(°C) 

Critical 

constants 

Density 
Weight 

(kg/m3) 

Relative 

density 

Specific 

heat 

Thermal 

conductivity 

Latent heat 

of 

vaporization 

(kJ/kg) 

Flash 

point 

Toxicity 

760 mm 

Hg (°C) 

Pressure 

(kPa) 

(abs) 

LC50 

MEA 0.254 0.326 0.182 0.659 0.437 0.430 0.438 0.452 0.530 0.615 0.339 0.177 

DEA 0.437 0.515 0.484 0.360 0.470 0.461 0.469 0.445 0.456 0.499 0.503 0.719 

DIPA 0.554 0.476 0.726 0.415 0.429 0.457 0.425 0.512 0.004 0.320 0.452 0.499 

DGA 0.437 0.423 -0.216 0.415 0.454 0.447 0.455 0.423 0.433 0.380 0.463 0.395 

MDEA 0.496 0.473 -0.398 0.304 0.446 0.440 0.448 0.397 0.569 0.355 0.463 0.215 

Table 5 

Normalized value of the interval data. 

Alternatives 
(Amine 

solvent) 

Process criteria 

C1 C2 C3 C4 C5 C6 C7 C8 C9 

1

l

ix  
1

u

ix  
2

l

ix  
2

u

ix  
3

l

ix  
3

u

ix  
4

l

ix  
4

u

ix  
5

l

ix  
5

u

ix  
6

l

ix  
6

u

ix  
7

l

ix  
7

u

ix  
8

l

ix  
8

u

ix  
9

l

ix  
9

u

ix  

MEA 0.2496 0.3472 0.2756 0.3340 0.6216 0.6216 0.3271 0.3780 0.1692 0.2819 0.4301 0.5146 0.4007 0.4756 0.4304 0.5246 0.4073 0.4595 

DEA 0.3092 0.4069 0.2923 0.5428 0.4144 0.4144 0.3125 0.5306 0.2819 0.3947 0.3763 0.4301 0.4120 0.4531 0.3901 0.4708 0.3805 0.4270 

DIPA 0.5425 0.6347 0.6013 0.8518 0.4144 0.4144 0.5815 0.7995 0.2819 0.3383 0.3763 0.4301 0.4120 0.4531 0.4002 0.4002 0.4285 0.4285 

DGA 0.3798 0.5371 0.2088 0.2505 0.5180 0.5180 0.2544 0.2907 0.5639 0.7894 0.4608 0.5530 0.4531 0.4756 0.5280 0.5280 0.5638 0.5638 

MDEA 0.2387 0.6076 0.1670 0.4593 0.0259 0.0518 0.2907 0.3998 0.4511 0.5639 0.3379 0.5146 0.4531 0.4756 0.3497 0.4069 0.3735 0.3918 

Physical index weights are determined by using the AHP method as follows: 

𝑊𝑗 = (0.044, 0.132, 0.132, 0.074, 0.044, 0.044, 0.044, 0.074, 0.103, 0.103, 0.074, 0.132) (19) 

Experts proposed process index weights as follows: 

𝑊𝑗 = ((0.75,1), (0.75,1), (1,1.25), (0.75,1), (0.75,1), (0.75,1), (0.75,1), (0.75,1), (0.25,0.5)) (20) 

The positive-ideal solution A+ and the negative-ideal solution A- are tabulated in Tables 6 and 7. 

Table 6 

A+ and A- of the physical criteria. 

Alternatives 

(Amine 

solvent) 

Physical criteria 

Molecular 

weight 

Boiling 

point Freezing 

point 

(°C) 

Critical 

constants 

Density 
Weight, 

(kg/m3) 

Relative 

density 

Specific 

heat 

Thermal 

conductivity 

Latent heat 

of 

vaporization 

(kJ/kg) 

Flash 

point 

Toxicity 

760 mm 

Hg (°C) 

Pressure 

(kPa) 

(abs) 

LC50 

MEA 0.011 0.043 0.024 0.05 0.019 0.019 0.019 0.033 0.055 0.063 0.025 0.023 

DEA 0.019 0.068 0.064 0.03 0.021 0.020 0.021 0.033 0.047 0.051 0.037 0.095 

DIPA 0.024 0.063 0.096 0.03 0.019 0.020 0.019 0.038 0.000 0.033 0.033 0.066 

DGA 0.019 0.056 -0.029 0.03 0.020 0.020 0.020 0.031 0.045 0.039 0.034 0.052 

MDEA 0.022 0.063 -0.053 0.02 0.020 0.019 0.020 0.029 0.059 0.036 0.034 0.028 

A  0.024 0.068 -0.053 0.048 0.021 0.020 0.021 0.038 0.059 0.033 0.037 0.023 

A  0.019 0.056 0.096 0.022 0.019 0.019 0.019 0.029 0.000 0.051 0.033 0.095 
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Table 7 

A+ and A- of the process criteria. 

Alternatives 

(Amine 

solvent) 

Process criteria 

C1 C2 C3 C4 C5 C6 C7 C8 C9 

1

l

iv  
1

u

iv  
2

l

iv  
2

u

iv  
3

l

iv  
3

u

iv  
4

l

iv  
4

u

iv  
5

l

iv  
5

u

iv  
6

l

iv  
6

u

iv  
7

l

iv  
7

u

iv  
8

l

iv  
8

u

iv  
9

l

iv  
9

u

iv  

MEA 0.1872 0.3472 0.2067 0.3340 0.6216 0.7771 0.2453 0.3780 0.1269 0.2819 0.3226 0.5146 0.3005 0.4756 0.3228 0.5246 0.1018 0.2297 

DEA 0.2319 0.4069 0.2192 0.5428 0.4144 0.5180 0.2344 0.5306 0.2115 0.3947 0.2822 0.4301 0.3090 0.4531 0.2926 0.4708 0.0951 0.2135 

DIPA 0.4069 0.6347 0.4510 0.8518 0.4144 0.5180 0.4361 0.7995 0.2115 0.3383 0.2822 0.4301 0.3090 0.4531 0.3001 0.4002 0.1071 0.2142 

DGA 0.2848 0.5371 0.1566 0.2505 0.5180 0.6476 0.1908 0.2907 0.4229 0.7894 0.3456 0.5530 0.3399 0.4756 0.3960 0.5280 0.1409 0.2819 

MDEA 0.1790 0.6076 0.1253 0.4593 0.0259 0.0648 0.2181 0.3998 0.3383 0.5639 0.2534 0.5146 0.3399 0.4756 0.2623 0.4069 0.0934 0.1959 
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A- 0.179 0.347 0.125 0.251 0.622 0.777 0.191 0.291 0.127 0.282 0.346 0.553 0.340 0.476 0.396 0.528 0.141 0.282 

The Euclidean distance, the relative closeness to the ideal solution, and the rank of the preference order 

for the physical criteria are presented in Table 8.  

Table 8 

Rank the preference order of physical criteria. 

 


id  

id  
iCl  Rank 

MEA 0.088 0.120 0.57644 3 

DEA 0.141 0.058 0.29259 4 

DIPA 0.166 0.038 0.18397 5 

DGA 0.047 0.140 0.74912 2 

MDEA 0.029 0.174 0.85728 1 

 

The Euclidean distance and the relative closeness to the ideal solution for the process criteria are 

summarized in Tables 9 and 10. 

Table 9 

Euclidean distance  ,i j jd V V  . 

 

  , 

i j jd V V  

j=1 j=2 j=3 j=4 j=5 j=6 j=7 j=8 j=9 
iD

 

i=1 0.254373907 0.389116937 0.654891537 0.313347055 0.406378007 0.07692837 0.012973163 0.094300094 0.022373479 2.22468255 

i=2 0.201981728 0.271287702 0.421323081 0.236115158 0.307670014 0.016627791 0.004864936 0.051770571 0.010716282 1.52235726 

i=3 0 0 0.421323081 0 0.338428207 0.016627791 0.004864936 0.021842416 0.016086326 0.81917276 

i=4 0.110082402 0.456511857 0.538104151 0.384646074 0 0.107885763 0.031277162 0.130742219 0.067684373 1.826934 

i=5 0.140038311 0.359618514 0 0.313331248 0.160318972 0.048774853 0.031277162 0.003883096 0 1.05724216 
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Table 10 

Euclidean distance  ,i j jd V V  . 

 

  ,i j jd V V 
 

j=1 j=2 j=3 j=4 j=5 j=6 j=7 j=8 j=9 
iD

 

i=1 0.004698202 0.082470161 0 0.071493636 0 0.031038543 0.022703034 0.043232156 0.045784157 0.30141989 

i=2 0.056318582 0.201429981 0.233597557 0.152637483 0.099014754 0.094692474 0.026793978 0.081390301 0.057450567 1.00332568 

i=3 0.258263473 0.470268902 0.233597557 0.384646074 0.070953832 0.094692474 0.026793978 0.112194772 0.051669337 1.7030804 

i=4 0.149811361 0.018080847 0.116798778 0 0.406378007 0 0 0 0 0.69106899 

i=5 0.150342478 0.120538982 0.654891537 0.072114432 0.247536886 0.067099769 0 0.127420335 0.067684373 1.50762879 

The relative closeness to the ideal solution and the rank of the preference order for the process criteria 

are listed in Table 11.  

Table 11 

Rank and the preference order of the process criteria. 

Amine solvent Cli Ranking 

MEA 0.11932212 5 

DEA 0.39724926 3 

DIPA 0.67522183 1 

DGA 0.27445122 4 

MDEA 0.58779908 2 

As can be observed, the ranking averages are as follows: MDEA=1.5, DGA=3, DIPA=3, DEA=3.5, and 

MEA=4; hence, MDEA is selected as the best amine solvent. The experts in the IGTC also confirm this 

selection. At present, Ilam Gas Treating Company uses this kind of amine, i.e. MDEA. Therefore, it 

can be concluded that the TOPSIS algorithm is successfully employed in different processes. The 

number of applications of the basic and modified versions of TOPSIS algorithm is increasing at a faster 

rate, which clearly proves the potential of the TOPSIS algorithm. This method has proved to be better 

than other similar optimization techniques like particle swarm optimization (PSO), genetic algorithm 

(GA), and Taguchi method. It requires a lower number of iterations but provides higher specific results, 

which makes it better than others algorithms. TOPSIS has not been used in this field so far; for the first 

time, we used MADM techniques for amine solvent selection herein.  

4. Conclusions 

The selection of a suitable amine solvent for sweetening can reduce capital and operating costs. This 

selection is considered to be an important decision in the process of gas treating. For the first time, 

MADM techniques are used in this work to select amine solvents. To create a systemic approach in the 

amine solvent selection, the MADM techniques are recommended. The selection of amine solvent is 

categorized in three phases: 1-creating the hierarchical structure, 2-calculating the criteria weights by 

AHP, and 3-selecting the solvent by TOPSIS. The criteria were divided in two classes, namely physical 

and process criteria, and twelve physical indexes and nine process indexes were detected. MEA, DEA, 

DIPA, DGA, and MDEA were intended as the alternatives. The ranking procedure was performed 

twice; first, the traditional TOPSIS method with the crisp data was used to rank the amine solvents. 
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Second, the modified TOPSIS method with the interval data was utilized to rank the alternatives. 

Ranking average was considered as the final ranking. According to our computations, MDEA was 

introduced as the best amine solvent with an average ranking of 1.5. The process indicators were 

considered to be twice as important as the physical indexes. However, the top ranking did not change, 

and only MDEA average ranking changed to 1.67.  

Nomenclature 

ijx  Performance of the alternative i at criterion j 

jw  Weight of the 
thj criterion 

ijn  Normalized value of the performance of alternative i at criterion j 

ijv  Weighted normalized value of the performance of alternative i at criterion j 

A
 Positive-ideal solution  

A
 Negative-ideal solution 

𝑑𝑖
+ Euclidean distance between alternative i and the positive-ideal solution  

𝑑𝑖
− Euclidean distance between alternative i and the negative-ideal solution 

𝐶𝑙𝑖  Relative closeness of alternative i to the ideal solution 

(1) (1) (1),l u

ij ij ijN n n     Normalized interval value data 

,l u

ij ij ijV v v     Weighted normalized interval data 

𝑑(�̅�𝑖𝑗 , �̅�𝑗
+) 

Euclidean distance between alternative i and the positive-ideal solution according 

to criterion j with interval data 

𝑑(�̅�𝑖𝑗 , �̅�𝑗
−) 

Euclidean distance between alternative i and the negative-ideal solution according 

to criterion j with interval data 

𝐷𝑖
+ 

Euclidean distance between alternative i and the positive-ideal solution with 

interval data  

𝐷𝑖
− 

Euclidean distance between alternative i and the negative-ideal solution with 

interval data 
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