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Abstract 

This study presents a robust and rigorous method based on intelligent models, namely radial basis 

function networks optimized by particle swarm optimization (PSO-RBF), multilayer perceptron 

neural networks (MLP-NNs), and adaptive neuro-fuzzy inference system optimized by particle 

swarm optimization methods (PSO-ANFIS), for predicting the equilibrium and kinetics of the 

adsorption of sulfur and nitrogen containing compounds from a liquid hydrocarbon model fuel on 

mesoporous materials. All the models were evaluated by the statistical and graphical methods. The 

predictions of the models were also compared with different kinetics and equilibrium models. The 

results showed that although all the models lead to accurate results, the PSO-ANFIS model 

represented the most reliable and dependable predictions with the correlation coefficient (R2) of 

0.99992 and average absolute relative deviation (AARD) of 0.039%. The developed models are also 

able to predict the experimental data with better precision and reliability compared to literature 

models.  

Keywords: Adsorption, Denitrogenation, Desulfurization, Equilibrium and Kinetics Model, PSO-

ANFIS, 

1. Introduction 

Due to the ever-growing population of the world and the increasing demand for energy, searching for 

new sources of fossil fuel is of great importance. However, these new sources of fossil fuel are usually 

contaminated by sulfur and nitrogen-containing compounds [1–3]. The presence of sulfur and nitrogen 

impurities in these fuels, which are used in combustion engines, leads to the formation of SOx and NOx 

compounds which are important air pollutants [4]. Due to stringent environmental regulations, ultra-

low concentrations of sulfur and nitrogen are allowable in transportation fuels. Hence, desulfurization 
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and denitrogenation of the fuels to meet the environmental regulations is of great importance [4–6]. 

Selective elimination of sulfur and nitrogen compounds from fuels by using adsorptive desulfurization 

and denitrogenation process is a popular and attractive method. It benefits from different advantages 

such as being environmentally-friendly, cheap, simple and highly efficient [7–9]. There are various 

experimental works in the literature concerning the use of different adsorbents for the selective removal 

of sulfur and nitrogen compounds from liquid fuels. These adsorbents include zeolite-based material, 

activated carbons, metal oxides, metal sulfides, silica-based materials and silica gel [4, 5, 8, 10–14]. 

However, literature review shows that there are few modeling works reported on the adsorptive 

desulfurization and denitrogenation of fuels [15–17]. Most of these works make use of static and 

dynamic adsorption isotherms to model their experimental data. However, these models should be tuned 

on each set of experimental data and on each type of adsorbent. Hence, developing more general and 

accurate models that can predict the experimental adsorption data for larger adsorbents with fewer and 

fixed optimization parameters is of the utmost importance. In recent years, soft computing methods and 

intelligent models have been increasingly used for modeling of nonlinear and complex relations in 

different engineering systems. Taking into account the great capability of these models for controlling 

and handling the nonlinear and complex relations in engineering systems, they can be utilized for 

modeling the performance of adsorptive desulfurization and denitrogenation processes. This study 

focuses on the application of these models for the prediction of equilibrium and kinetics of the 

adsorption of sulfur and nitrogen from a model fuel on mesoporous adsorbents. 

2. Predictive tools 

2.1. Multilayer perceptron neural networks (MLP-NNs) 

The multilayer perceptron type networks contain three layers, namely the input layer, the hidden layer, 

and the output layer, in their structure. The hidden layer could be composed of either one or several 

layers. Each hidden layer contains specific processing units known as neurons. The number of these 

neurons is dependent on the size of the input and output data. There are various methods and techniques 

for evaluating the number of neurons and the number of hidden layers in the structure of these networks. 

These methods include the trial-and-error approach and intelligent methods [18]. Usually a cost function 

which is the mean square error (MSE) between target values and predicted data is utilized to evaluate 

the reliability and precision of the outcomes of these networks. In MLP-NN models and models which 

are branches of artificial neural networks (ANNs), the error is back propagated within the network and 

the optimum values of weight and bias terms are determined by using a certain number of iterations 

known as epochs [19, 20]. The number of iterations or epochs must be such that they prevent the model 

from over fitting or under-fitting problems. In the case of under-fitting of the network, the training phase 

of the network is insufficient and incomplete because of providing less training for the network. 

Moreover, in the case of overfitting, the model fails to learn during the training phase and just 

memorizes. In both cases, the model predicts the test data with a poor degree of accuracy.  

2.2. Radial basis function neural networks (RBF-NNs) 

RBF-NNs are a branch of artificial neural networks in which they hold three layers, namely the input 

layer, the hidden layer, and the output layer, in their structure. These networks contain just one hidden 

layer in their structure. There are certain units called weight terms the value of which greatly affects the 

performance of each RBF-NN. The values of these terms are adjusted through using a technique named 

gradient decent approach. The hidden layer contains a number of units called neurons or hidden units 

in which each neuron holds a specific activation function (radial basis function (RBF)) [21, 22]. In 
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dealing with large scale and highly nonlinear problems, it is very important to increase the number of 

hidden neurons in order to access the desired accuracy and robustness of the model. Several specific 

characteristics of RBF-NNs such as their adaptive structure, great ability to generalize the results, 

acceptable accuracy, fast convergence to the optimum solution, and independency of the output value 

on the adjusted weight terms make these networks popular and powerful tools for solving nonlinear and 

complex problems in different areas of science and engineering. The number of nodes or neurons which 

are located in the input layer is identical to the number of input parameters (the dimensions of input 

vector) [23]. The output layer linearly combines the outputs of neurons of the hidden layer. In other 

words, this layer projects the nonlinearity of the problem into a new linear space. 

Considering the number of N input data points containing D independent input parameters, there is an 

input vector with dimensions N×D represented by  : 1,2,..., ,  p=1,2,....,p p
iX x i D N   in which the 

aim of modeling and interpolating by RBF-NN is to probe a function such as f(x) which confirms the 

equality of f(Xp)=tp, where tp is the related output parameter. For every given input parameter, the RBF-

NN utilizes its RBFs which are in the hidden layer and are in the form of  px x  , where   indicates 

the class and type of RBF explained later. Hence, the output of such a function is dependent on its input 

value which is denoted by px x , i.e. the Euclidean distance between data point x and the related 

center xp [24]. The output of this projection is the linear weighted summation of the outputs of RBFs 

denoted by 
1

( ) ( )
N

p
p

p

f x w x x


  . The aim is to allocate the weight terms (wp) in a manner that 

function f(x) is capable of projecting the input data into their corresponding output values. To put it 

another way, the purpose is to adjust weight terms such that this relation 

   
1
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q q p q

p

p

f x w x x t


    is valid. By allocating these weights appropriately, there will be a 

continuous and differentiable function f(x) which accurately passes through the input data points and 

effectively predicts their output values. Currently various types of RBFs are utilized to perform in the 

neurons of the hidden layer; however, the most popular one which represents acceptable results and is 

widely used in various modeling problems is the Gaussian type RBF represented by below equation 

[25, 26]: 

2
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( ) exp

2

r
r



 
  

 
 

(1) 

where σ controls the smoothness of RBF function, and r is the distance between a data point like x and 

a center like xp; both σ and r are positive terms. In this work, this type of RBF was utilized in the hidden 

neurons of the hidden layer. 

2.3. Adaptive neuro-fuzzy inference system (ANFIS) 

Fuzzy logic (FL) is a concept introduced by Zadeh [27] for the first time to allow modeling of complex 

and obscure systems. The performances of fuzzy logic and classical logic are different. While classical 

logic takes the problem as the crisp true and false systems, the fuzzy logic tries to solve and model the 

problem under consideration by defining fuzzy sets of true and false or membership degree of truth in 

fuzzy sets [28].  
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Fuzzy logic utilizes if-then fuzzy linguistic rules to deal with the problem through an alternative and 

qualitative approach instead of performing exact quantitative evaluations. The accurate and clear 

knowledge about the features of the problem under consideration is essential for performing such a 

qualitative modeling process. However, due to insufficient information about the details and 

nonlinearity of the problem and also the different aspects of human knowledge, it is not suitable to 

define and design fuzzy systems based on human knowledge. A helpful and powerful alternative method 

is using the abilities of ANNs since they are able to extract and gain the essential knowledge from the 

instant and online data bases. The patterns learned and obtained from ANNs could be used by fuzzy 

logic to construct proper linguistic if-then rules to describe these patterns. The membership functions 

(MFs) are modified and tuned via using the learning capability of ANNs [28–31]. Generally, fuzzy 

inference system (FIS) structures include two main types, namely Mamdani FIS and Takagi-Sugeno-

Kang (TSK) FIS. The Mamdani FIS utilizes fuzzy if-then rules on a subjective basis and according to 

expert statements. However, the TSK FIS puts these rules in a framework and creates them through 

relations between the input and the output data. The subjective definition which is utilized by Mamdani 

FIS for the generation of rules may result in ambiguity and inaccuracy. ANFIS models, which use the 

TSK type FIS for modeling nonlinear and complex relations between input and output data, usually 

provide better results [28, 29, 32–34]. Taking into account a first order TSK type FIS, the following 

rules can be used to construct a fuzzy model for a system with two input parameters and one output 

parameter [28]: 

Rule І: 

1 1 2 1 1 1 1 1 2 1IF  is  and  is  THEN X A X B f m X n X r    (2)  

Rule П: 

1 2 2 2 2 2 1 2 2 2IF  is  and  is  THEN X A X B f m X n X r    (3) 

Rule ІІІ: 

1 1 2 2 3 3 1 3 2 3IF  is  and  is  THEN X A X B f m X n X r    (4) 

Rule ІV: 

1 2 2 1 4 4 1 4 2 4IF  is  and  is  THEN X A X B f m X n X r    (5) 

where, X1 and X2 are input parameters, A1,2 and B1,2 are fuzzy sets for X1 and X2, and Y is the 

corresponding output. The statements in IF parts are known as the antecedent, and the conditions in 

THEN parts are called the consequence.  

2.4. Particle swarm optimization (PSO)    

This algorithm is one of the newest optimization algorithms introduced by Eberhart and Kennedy [35]. 

The origin of this algorithm is attributed to random motions of several animals such as bird flocking or 

fish schooling. The operation of PSO is similar to genetic algorithm (GA). PSO generates an initial 
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population of random solutions in which each solution or each member of this population has a random 

location and velocity in the multidimensional search domain.  

The members of population which are solutions to the corresponding optimization problem move 

around in the search domain to find the optimum solution. PSO utilizes an iterative procedure for finding 

the optimum solution. Throughout this process, the velocities and locations of particles are continuously 

modified and updated in the search domain. The basis for this modification of locations and velocities 

is the previous best condition of the particle itself or its neighborhood (cognitive behavior) and either 

the best condition of total particles (social behavior). The operation of PSO can be explained 

mathematically as given below [36–38]: 

   1
1 1 2 2Pb Gbj i j j j j j j j

i i i i i iw c x c x          (6) 

1 1j j j
i i ix x     (7) 

In above expressions, vi
j and xi

j are the velocity and the location of ith particle in jth epoch. Pbi represents 

the best condition of each particle in the population, and Gbi is the global best condition which exists 

in the entire population; w is a parameter named inertia weight, and α1,2 represents acceleration 

constants; c1,2 are vectors that contain uniformly distributed random numbers.  

The purpose of using inertia weight in Equation (6 is to prevent over fitting of PSO at higher iterations. 

This term was used by Shi and Eberhart [39] for the first time. As the optimization procedure proceeds, 

the decrease in the value of w results in a shift from an exploratory search to an exploitative one, which 

provides faster convergence to the global minima. The decrease in value of w from winitial to wfinal with 

epoch number is expressed by: 

   max initial final

max

j
final

j j w w
w w

j

  
   (8) 

where, jmax represents the maximum number of performed epochs. Setting winitial at 0.9 and wfinal at 0.4 

usually provide a good and appropriate starting point [38].  

3. Results and discussion 

3.1. Data acquisition 

In order to develop a reliable and effective model, accurate and dependable experimental data need to 

be utilized. In this paper, in order to evaluate the performance of the models developed for predicting 

denitrogenation and desulfurization of the model fuel, 420 data points, including 260 experimental 

kinetic adsorption data points and 160 experimental equilibrium adsorption data points were employed. 

The data points used were from two published works by the co-authors [2, 40]. The detailed explanation 

and representation of measurement of the data points are explained in these published works. The data 

points include kinetic and equilibrium adsorption data of a model fuel containing quinoline, carbazole, 

benzothiophene (BT), and dibenzothiophene (DBT) into five types of mesostructured adsorbents, 

namely aluminosilicate mesostructure (MSU-S), iron-, cerium-, chromium-, and copper-modified 

aluminosilicate mesostructures (Fe-MSU-S, Ce-MSU-S, Cr-MSU-S, and Cu-MSU-S). The input 

parameters of the developed models were the Brunauer-Emmett-Teller (BET) surface area of the 
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adsorbent (m2/g), average pore diameter of the adsorbent (Å), molecular weight of compounds of the 

model fuel (quinoline, carbazole, BT, and DBT) (g/mol), initial concentration of compounds of the 

model fuel (ppm), and time (min). The adsorption of nitrogen- and sulfur-containing compounds of the 

model fuel (mg/g) was also the output parameter of the developed models. Table 1 and Table 2 show 

some details about the utilized data. 

Table 1  

Textural parameters of the adsorbents [2, 45] 

Adsorbent BET surface area (m2/g) Average pore diameter (Å) 

MSU-S 677 24.29 

Cr-MSU-S 365.32 30.55 

Fe-MSU-S 400 29.097 

Ce-MSU-S 406.33 20.61 

Cu-MSU-S 391.24 27.29 

Table 2  

Detailed analysis of the utilized data [2, 45] 

System Molecular weight (g/mol) Time (min) Adsorption (mg/g) 

Quinoline/adsorbent 129.16 10-600 5.36-51.57 

Carbazole/adsorbent 167.206 10-600 6.74-26.94 

BT/adsorbent 134.196 10-600 5.36-29.69 

DBT/adsorbent 184.26 10-600 2.73-33.63 

3.2. Model development 

In the present work, MATLAB® 2014a was implemented to develop MLP-NN, PSO-RBF, and PSO-

ANFIS models. Before the construction of the models, the data points were separated into two subsets 

of training and testing data on a random basis. For the training set, 80% of the data points is utilized, 

and the remaining 20% of the data points is used as the testing dataset. The detailed process of the 

development of different models is explained below. 

a. MLP-ANN model 

Despite this fact that an MLP-NN model can include one or several hidden layers in its structure, it was 

proved on a mathematical basis that any nonlinear function can be predicted by MLP-NNs where there 

is only one hidden layer in their structure [41]. Taking this fact into account and to reduce the 

computational time, in the current study, an MLP-NN model with only one hidden layer was utilized. 

Since the modeling problem involves five input parameters and one output parameter, the constructed 

network has five neurons in the input layer and one neuron in its output layer. In order to characterize 

the MLP-NN model with the best accuracy, the number of located neurons in the hidden layer was 

changed from 4 to 25, and the performance of the network was monitored. The MSE value between the 
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target data and MLP-NN predictions for the testing, training, and the whole data points in each epoch 

(iteration) versus the number of neurons of the hidden layer is depicted in Figure 1. It is evident from 

this figure that the MLP-NN model with 23 neurons in its hidden layer provides the lowest value of 

MSE for all the data, meaning that this network provides the best performance compared to other tested 

networks. 

 

Figure 1 

The change in the MSE of different MLP-NN networks against the number of hidden neurons. 

b. PSO-RBF model 

There are two parameters, namely the maximum number of neurons (MNNs) and spread, in the structure 

of RBF networks the value of which drastically influences the accuracy and performance of the RBF 

networks. Hence, to obtain an accurate and effective network for the estimation of the experimental 

data, the optimization ability of PSO was utilized to determine the optimum values of these parameters.  

At the first stage, a population size of 50 random solutions was generated. In the next step, the members 

of the population were classified according to their cost function, which is the MSE value between each 

solution and the corresponding target values. Afterward, the PSO operators were utilized to construct a 

new population of better selected solutions. The optimum values of MNN and the spread obtained after 

30 generations were 54 and 5 respectively. The monitored and recorded performance of the genetic 

algorithm during convergence to the optimum values is displayed in Figure 2.  

c. PSO-ANFIS model 

In order to develop the ANFIS model, initially a first order FIS was constructed by using the training 

data and genfis2 function of MATLAB. Then, the structure of the constructed FIS is trained by PSO 

method to achieve a better and more precise performance. This method assumes the problem of training 

the FIS structure as an optimization problem in which the tuning parameters of this optimization 

problem are the parameters of the corresponding MFs.  
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The performance of the PSO method during the training of the FIS is shown in Figure 3. It is clear that 

the total MSE value of PSO-ANFIS model is effectively lowered to values below the initial MSE of the 

ANFIS model, which confirms that the training of the ANFIS structure with the PSO method enhances 

the accuracy and effectiveness of this model.  

 

Figure 2 

Performance of PSO method during the optimization of the parameters of RBF-NN model. 

 

Figure 3 

Performance of the PSO method during the training of the ANFIS model. 

Figure 4 represents the structure of the created PSO-ANFIS model. The final MFs after the completion 

of the training process are depicted in Figure 5. According to these figures, the developed PSO-ANFIS 

model uses eight rules and has eight membership functions for each input parameter.  
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Figure 4  

The structure of the PSO-ANFIS model. 
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b) 

 

c) 
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d) 

 

e) 

 

Figure 5  

The final MFs of the PSO-ANFIS model for different input parameters: a) best surface area; b) average pore 

diameter; c) Initial concentration; d) molecular weight; e) time. 
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3.3. Evaluation of the developed models 

The cross plot of the predicted adsorption data against the experimental data for three developed models 

is shown in Figure 6. This figure demonstrates that all the models are able to reproduce the experimental 

adsorption data accurately as is evident from the high-correlation coefficients (R2) values of these 

models which are appropriately close to one. The R2 values of the MLP-NN, PSO-RBF, and PSO-

ANFIS models are 0.99967, 0.99551, and 0.99992 respectively, which confirms that although all the 

models have satisfactory performance, the accuracy of PSO-ANFIS model is better than that of the two 

other models.  

The relative error plot of the predictions of the developed models is shown in Figure 7, which shows 

that the relative deviations of all the developed models are bounded in the span of ±10%. It is also clear 

that for the developed models, the relative errors are mostly concentrated near the zero-deviation line, 

which indicates the accuracy and the reliability of the proposed models. The deviations of the PSO-

ANFIS model are less than those of the two other models, which further confirms the superiority of this 

model to the MLP-NN and PSO-RBF models. 

a) 

 



M. R. Khosravi-Nikou et al. / A Robust Method to Predict Equilibrium and Kinetics … 105 

 

b) 

 

c) 

 

Figure 6  

Cross plot of the predictions of the developed models against experimental adsorption data: a) MLP-NN; b) PSO-

RBF; c) PSO-ANFIS 
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b) 
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c) 

 

Figure 7  

Relative error plot of the predictions of the developed models against the experimental adsorption data: a) MLP-

NN; b) PSO-RBF; c) PSO-ANFIS. 
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where, qPred (i) is the ith predicted adsorption value, qExp (i) is the ith experimental adsorption value, and 

N is the number of data points. Table 3 shows that the developed models exhibit high R2 values and low 

RMSE and AARD% values in training, testing, and the whole data points. According to this table, the 

PSO-ANFIS model exhibits better performance in comparison with the MLP-NN and PSO-RBF 

models. The accuracy of the MLP-NN model with AARD% and RMSE values of 0.171 and 0.192 

respectively is also better than that of the PSO-RBF model, which gives AARD% and RMSE values of 

0.759 and 0.714 respectively.  

Table 3 

Statistical parameters of the developed models. 

Model Data set R2 AARD% RMSE 

MLP-NN 

Train data 0.9998 0.143 0.157 

Test data 0.9991 0.285 0.290 

Total data 0.9997 0.171 0.192 

PSO-RBF 

Train data 0.9956 0.592 0.698 

Test data 0.9954 1.428 0.774 

Total data 0.9955 0.759 0.714 

PSO-ANFIS 

Train data 0.99999 0.007 0.011 

Test data 0.99990 0.047 0.108 

Total data 0.99992 0.039 0.097 

At this point the predictions of the developed models are compared with the literature data on 

equilibrium and kinetics. The predictions of the developed models for equilibrium adsorption data are 

compared with Langmuir [42] and Freundlich [43] adsorption models, and the estimation of the 

developed models for the kinetic adsorption data are compared with the pseudo first-order [44] and the 

pseudo second-order [44] models. R2 values of the developed models, Langmuir model, and Freundlich 

model for different adsorbents are listed in Table 4. Similarly, R2 values of these models for the kinetic 

data are presented in Table 5. Table 4 shows that the developed models exhibit acceptable levels of 

accuracy as they exhibit R2 values higher than the Langmuir and Freundlich isotherms. Table 5 also 

confirms that the predictions of the developed models are better than those of the pseudo first-order and 

the pseudo second-order models as R2 values of these models are higher compared to the pseudo first-

order and the pseudo second-order models in different systems.  
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Table 4 

Comparison between R2 values of the developed models and the available equilibrium adsorption models. 

Adsorbent Compounds 

Langmuir Freundlich MLP-NN PSO-RBF PSO-ANFIS 

qm 

(mg/g) 

KL 

(kg/mg) 

R2 1/n 

KF 

(mg1−(1/n).

g–1.kg1/n) 

R2 R2 R2 R2 

MSU-S 

Quinoline 67.56 0.00256 0.9991 0.6946 0.504 0.9927 0.9999 0.9999 0.9999 

Carbazole 36.23 0.00211 0.9967 0.6386 0.352 0.9921 0.9999 0.9999 0.9999 

Dibenzothiophene 19.6 0.00159 0.9933 0.472 0.454 0.9732 0.9999 0.9999 0.9999 

Benzothiophene 22.17 0.00132 0.9966 0.5037 0.381 0.9751 0.9999 0.9999 0.9999 

Cr-MSU-S 

Quinoline 50.251 0.007825 0.9887 0.5546 1.575 0.9988 0.9994 0.9999 0.9999 

Carbazole 33.557 0.003778 0.9829 0.5573 0.7095 0.9925 0.9997 0.9813 0.9999 

Dibenzothiophene 27.47 0.002135 0.9904 0.4225 0.9997 0.9455 0.9999 0.9994 0.9994 

Benzothiophene 28.98 0.00203 0.9821 0.4315 0.973 0.9442 0.9999 0.9996 0.9999 

Fe-MSU-S 

Quinoline 46.511 0.0203 0.9405 0.479 3.1556 0.9915 0.9999 0.9999 0.9999 

Carbazole 39.52 0.00303 0.9971 0.5984 0.5904 0.9972 0.9993 0.9956 0.9999 

Dibenzothiophene 24.39 0.00201 0.9946 0.4327 0.8106 0.9594 0.9934 0.9999 0.9999 

Benzothiophene 25.84 0.00199 0.9857 0.4484 0.766 0.9765 0.9999 0.9925 0.9999 

Ce-MSU-S 

Quinoline 29.32 0.00196 0.9959 0.4579 0.816 0.9727 0.9999 0.9999 0.9999 

Carbazole 32.79 0.00162 0.9949 0.5089 0.599 0.9852 0.9995 0.9998 0.9999 

Dibenzothiophene 50.76 0.00415 0.9721 0.6368 0.754 0.9963 0.9908 0.9731 0.9999 

Benzothiophene 36.50 0.00250 0.9986 0.5280 0.752 0.9931 0.9999 0.9896 0.9998 

Cu-MSU-S 

Quinoline 56.82 0.00134 0.9988 0.5787 0.602 0.9816 0.9999 0.9999 0.9999 

Carbazole 48.10 0.00136 0.9971 0.5422 0.645 0.9637 0.9999 0.9999 0.9999 

Dibenzothiophene 49.75 0.00836 0.9569 0.5781 1.448 0.9947 0.9999 0.9999 0.9999 

Benzothiophene 36.76 0.00316 0.9962 0.5823 0.616 0.9883 0.9999 0.9999 0.9999 
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Table 5 

Comparison between R2 values of the developed models and the available kinetic adsorption models. 

Adsorbent Compounds 

Pseudo-first order Pseudo-second order 

MLP-

NN 

PSO-

RBF 

PSO-ANFIS 

qe 

(mg/g) 

k1ad 

(1/min) 

R2 qe (mg/g) 

k2ad(g/m

g.min) 

R2 R2 R2 R2 

MSU-S 

Quinoline 35.58 0.037 0.9764 39.682 0.00209 0.9951 0.9999 0.9999 0.9999 

Carbazole 8.658 0.027 0.8876 21.097 0.00419 0.9943 0.9999 0.9999 0.9999 

Dibenzothiophene 15.16 0.032 0.9659 15.923 0.00225 0.9791 0.9999 0.9999 0.9999 

Benzothiophene 11.6 0.026 0.9109 16.181 0.00462 0.9946 0.9999 0.9999 0.9999 

Cr-MSU-S 

Quinoline 31.06 0.0382 0.9842 47.39 0.00308 0.9983 0.9999 0.9999 0.9999 

Carbazole 11.06 0.0259 0.8933 22.83 0.00648 0.9984 0.9999 0.9843 0.9999 

Dibenzothiophene 9.452 0.0267 0.945 20.576 0.00651 0.9981 0.9973 0.9937 0.9973 

Benzothiophene 12.14 0.0296 0.958 22.8 0.0065 0.9987 0.9987 0.9987 0.9999 

Fe-MSU-S 

Quinoline 18.11 0.0314 0.9062 52.91 0.0039 0.9987 0.9999 0.9999 0.9999 

Carbazole 8.12 0.0265 0.8556 23.98 0.0075 0.9984 0.9999 0.9817 0.9999 

Dibenzothiophene 4.87 0.0269 0.8381 18.28 0.00741 0.9973 0.9999 0.9997 0.9999 

Benzothiophene 10.04 0.0297 0.9142 20.08 0.0074 0.9984 0.9925 0.9919 0.9999 

Ce-MSU-S 

Quinoline 10.04 0.0297 0.9142 21.5 0.00792 0.9984 0.9999 0.9999 0.9999 

Carbazole 7.78 0.0224 0.7795 23.81 0.01144 0.9994 0.9999 0.9751 0.9999 

Dibenzothiophene 15.27 0.0311 0.8812 40.485 0.00501 0.9988 0.9990 0.9976 0.9990 

Benzothiophene 6.94 0.0283 0.87 20.876 0.01073 0.9943 0.9721 0.9735 0.9999 

Cu-MSU-S 

Quinoline 12.606 0.0244 0.8015 33.89 0.0052 0.9987 0.9999 0.9999 0.9999 

Carbazole 10.558 0.0252 0.7872 29.41 0.0063 0.9986 0.9999 0.9999 0.9999 

Dibenzothiophene 16.6 0.0273 0.8133 47.39 0.0039 0.9984 0.9999 0.9999 0.9999 

Benzothiophene 7.135 0.0186 0.8443 22.62 0.0072 0.9986 0.9999 0.9999 0.9999 

The plot of the experimental equilibrium adsorption data versus the initial concentration of adsorbent 

and the plot of the experimental kinetic adsorption data versus the time for the different models are 

illustrated in Figure 8 and Figure 9 respectively to provide a better visual comparison between these 

models. These figures also show that the developed models are better and more accurate than the 

literature models for capturing the trend of the experimental equilibrium and kinetic adsorption data in 

different systems. Another advantage of the developed models over other models is that the models 

proposed in the present work are able to predict the experimental equilibrium and kinetic data for all 

systems with a single trained structure and with a satisfactory degree of accuracy. However, the use of 

Langmuir and Freundlich models for equilibrium data and also the use of the pseudo first-order and the 

pseudo second-order model for kinetic data require fitting the related parameters of each model to the 
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experimental data for each system separately. Therefore, thanks to higher R2 values and lower AARD% 

and RMSE, the models developed herein exhibit a higher generalization ability and better accuracy 

compared to the models available in the literature.  
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c) 

 

d) 

 

Figure 8  

Comparison between predictions of the developed models and literature equilibrium models for different systems: 

a) Ce-MSU-S/DBT system; b) Cr-MSU-S/quinolone; c) Cu-MSU-S/BT; d) Fe-MSU-S/Carbazole. 
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c) 

 

d) 

 

Figure 9 

Comparison between predictions of the developed models and literature kinetic models for different systems: a) 

Ce-MSU-S/DBT system; b) Cr-MSU-S/quinolone; c) Cu-MSU-S/BT; d) Fe-MSU-S/Carbazole. 
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4. Conclusions 

In this study, three intelligent models, namely PSO-RBF, MLP-NN, and PSO-ANFIS, were 

implemented to predict the denitrogenation and desulfurization of a model fuel in the presence of 

mesostructured adsorbents. The predictions of the developed models were evaluated through various 

approaches, and it was observed that all the models represented accurate and reliable predictions. R2, 

AARD%, and RMSE values of the developed models were 0.99992, 0.039, and 0.097 respectively for 

PSO-ANFIS; 0.9997, 0.171, and 0.29 respectively for MLP-NN; and 0.9955, 0.759, and 0.714 

respectively for PSO-RBF. However, the PSO-ANFIS model exhibited better results compared to the 

two other models. The predictions of the developed models were also compared with the literature 

kinetic and the equilibrium adsorption models, and it was observed that the developed models presented 

better predictions. It should be mentioned that each of the models developed in the present work 

exhibited some shortcomings. The main limitation of these models is that they are black box type 

models in nature and they could either underpredict or overpredict the experimental values which are 

outside their applicability domain. Another limitation is that in order to develop an accurate and 

dependable model, sufficient experimental data are needed for the training of these models. However, 

in the case of the availability of data, it is possible to develop accurate models for the prediction of 

experimental values by applying these techniques. The current models can be employed in areas where 

the accurate and rapid prediction of the desulfurization and denitrogenation of model fuels by 

mesoporous materials is required. Moreover, developing computing models for the prediction of 

desulfurization and denitrogenation of different materials in the presence of various adsorbents can be 

investigated to implement more general models in future works.  

Nomenclature 

Abbreviations 

AARD% Average absolute relative deviation 

FIS Fuzzy inference system 

MF Membership function 

MLP-NN Multilayer perceptron neural network 

MSE Mean square error 

N Number of data points 

RBF Radial basis function 

RMSE Root mean square error 

Variables 

α1,2  Acceleration constants 

c1,2  Vectors contain random numbers 

Gbi  Global best condition 

n Constant of Kendall-Monroe model 

I Position of an input pattern in RBF model 

kInp  kth input parameter 

,k iInp  ith component of kth input parameter 

(r)  Nonlinear activation function 

Pbi  Best condition of each particle in population 
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qExp (i)  ith experimental adsorption value 

qPred (i) ith predicted adsorption value 

σ Parameter that controls the smoothness in activation function 

r Euclidian distance in RBF model 

R2 Correlation factor 

j  Center of jth cluster in RBF model 

j
iv  Velocity of ith particle in jth epoch 

w  Inertia weight 

wp Weights vector 

xi
j Location of ith particle in jth epoch 
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