Chemical Engineering
Hossein Hejazi; Behrouz Bayati; Mohsen Mansouri
Abstract
This study investigated the effect of ethylene-vinyl acetate (EVA) as an inhibitor on wax appearance temperature (WAT) of crude oil in the Iranian oil field using the differential scanning calorimetry (DSC) method. The effect of EVA on the morphology of crude oil wax crystals was examined by a system ...
Read More
This study investigated the effect of ethylene-vinyl acetate (EVA) as an inhibitor on wax appearance temperature (WAT) of crude oil in the Iranian oil field using the differential scanning calorimetry (DSC) method. The effect of EVA on the morphology of crude oil wax crystals was examined by a system equipped with an ocular microscope. The EVA inhibitor has an outstanding performance in reducing the wax appearance temperature of crude oil and prevents the crystallization process and the connection of the growing wax crystals to form a network structure by adsorbing on them. Adding 800 ppm of the EVA inhibitor caused the most significant decrease in the WAT of crude oil at a rate of 26.13 °C and formed smaller crystals and weaker structures at this concentration. Therefore, 800 ppm of the EVA inhibitor was selected as the optimal value.
Chemical Engineering
Bahman Behzadi; Maziar Noei; Alireza Azimi; Masoume Mirzaei; Hossien Anaraki Ardakani
Abstract
Water can contain microorganisms and cause deposition and corrosion in cooling tower systems. Therefore, the water treatment of cooling towers is essential. Various biocides are used to remove bacteria and disinfect the water of cooling towers, and the most commonly used are sodium hypochlorite and chlorine ...
Read More
Water can contain microorganisms and cause deposition and corrosion in cooling tower systems. Therefore, the water treatment of cooling towers is essential. Various biocides are used to remove bacteria and disinfect the water of cooling towers, and the most commonly used are sodium hypochlorite and chlorine compounds. This work examined two chlorinated water, namely hypochlorous acid and sodium hypochlorite, in two pilot and industrial cooling towers. The results of the experiments on the pilot tower showed that the performance of hypochlorous acid in the disinfection and removal of bacteria and microorganisms was excellent. The total bacterial count decreased from 10000 to less than 800 (cfu/mL) compared to sodium hypochlorite. The experiments were performed on the industrial cooling tower of an acetic acid unit for six months, in which pH, free chlorine, total bacterial count (TBC), and sulfate-reducing bacteria (SRB) were measured. The very high disinfection power of hypochlorous acid compared to sodium hypochlorite and its relatively lower pH level led to a significant reduction in the use of chemicals in the cooling tower. The experiments and TBC and SRB tests showed outstanding performance in using hypochlorous acid.
Chemical Engineering
Mostafa Jafari; Amirhossein Khalili-Garakani
Abstract
In Iran, power plants use liquid fuels such as heavy fuel oil (HFO) or mazut to prevent disruption in power generation. The high percentage of sulfur compounds in HFO and the lack of efforts to remove it, causing significant damage to the environment. The purpose of this research is performing a techno-economic ...
Read More
In Iran, power plants use liquid fuels such as heavy fuel oil (HFO) or mazut to prevent disruption in power generation. The high percentage of sulfur compounds in HFO and the lack of efforts to remove it, causing significant damage to the environment. The purpose of this research is performing a techno-economic analysis on the Hydrodesulfurization (HDS) process of HFO. The results showed that for removing 85% of sulfur compounds from HFO with a volume flow rate of 250 m3/h that includes 3.5% wt sulfur compounds, the total capital investment and the net production cost are 308.9 million US$ and 114.5 million US$/year, respectively. Besides, the sensitivity analysis indicates that with a 100% increase in the catalyst loading, the mass percentage of sulfur compounds in the HFO will be decreased by 15% more. Also, 6.4% and 32% will add to the total capital investment and net production cost, respectively. With a 100% increase in the gas to oil ratio, the mass percentage of sulfur compounds in the HFO will be decreased by 15.3% more. Also, 43.8% and 6% will be added to the total capital investment and net production cost, respectively. With a 100% increase in the pressure of the HDS process, the mass percentage of sulfur compounds in the HFO will be reduced by 20.75% more. Also, 43% and 6.75% will be added to the total capital investment and net production cost, respectively. Ultimately, with a 100% increase in the inlet temperature of beds, the mass percentage of sulfur compounds in the HFO will be reduced by 5% more. Among the effective operational parameters, hydrogen consumption has the greatest impact on net production cost and payback period, and the pressure of the Hydrodesulfurization process has the greatest impact on increasing the total capital investment of the process.
Chemical Engineering
Iqbal Iqbal Hossain; Manos Roy; Abir Debnath
Abstract
Gasoline obtained from the fractionation of indigenous natural gas condensate has low octane number (78) and is therefore of limited uses. Lead-based octane boosting and catalytic reforming are not the viable methods for many fractionation plants. This study was therefore aimed to develop an inexpensive ...
Read More
Gasoline obtained from the fractionation of indigenous natural gas condensate has low octane number (78) and is therefore of limited uses. Lead-based octane boosting and catalytic reforming are not the viable methods for many fractionation plants. This study was therefore aimed to develop an inexpensive conceptual alternative method for boosting the octane number of gasoline. Natural gas concentrated in methane having high octane number (more than 100) was absorbed in the gasoline to boost the octane number partially (86). Selective additives i.e. ethanol, tert-butyl alcohol, methylcyclopentane, toluene, iso-octane and xylene were blended first with the gasoline to aid the absorption of natural gas molecules. The loss of absorbed gas molecules from gasoline with the increase in temperature was also observed. It is therefore required to try for avoiding any increase in temperature in the finished gasoline. The developed conceptual method is promising. The findings of this simulation study would be useful for more studies towards the development of an affordable alternative method for fractionation plants for boosting the octane number of gasoline derived from natural gas condensate.
Chemical Engineering
Taleb Eidy; Seyed Ali Hosseini; Ghasem Marandi
Abstract
The separation of naphthenic acids from crude oil is difficult, and the presence of such materials in crude oil reduces its value. In this work, using catalytic esterification with methanol, naphthenic acids of crude oil were removed to reduce their harmful effects. SnO2/γ-Al2O3 nanocatalyst was ...
Read More
The separation of naphthenic acids from crude oil is difficult, and the presence of such materials in crude oil reduces its value. In this work, using catalytic esterification with methanol, naphthenic acids of crude oil were removed to reduce their harmful effects. SnO2/γ-Al2O3 nanocatalyst was synthesized and used to convert naphthenic acids of crude oil in a fixed bed catalytic reactor. The nanocatalyst was characterized by the X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and Brunauer–Emmett–Teller (BET) surface area techniques. The XRD revealed the formation of rutile SnO2 on alumina, and the FESEM approved that the catalyst is comprised of nanoparticles with a diameter in the range of 50 to 90 nm. The BET indicated that the catalyst has a mesopore structure with a surface area of 213.4 m2·g–1. The optimal conditions for the catalytic esterification process of naphthenic oil were determined. The temperature of the reduction of the total acid number (TAN) of crude oil ranged from 250 to 360 °C, and the TAN was reduced to less than 0.5 mg KOH/g in this temperature range. A methanol-to-oil ratio (M/O) of 2 wt %, a velocity space of 2.5 h–1, a reaction temperature of 300 °C, and atmospheric pressure were selected as the optimal conditions for the removal of naphthenic acids. Under these conditions, 83% of naphthenic acids was removed. The study indicated that SnO2/γ-Al2O3 could be a promising nanocatalyst for the reduction of total acid of crude oil under mild conditions.
Chemical Engineering
Fateme Beiranvand; Seyed Hesam Najibi; Bahram Hashemi Shahraki
Abstract
A device is designed and constructed for measuring the equilibrium surface tension of water and a number of other solutions. The measured equilibrium surface tension of water, as a reference fluid, has good consistency with literature data. Moreover, the equilibrium surface tension of the aqueous solutions ...
Read More
A device is designed and constructed for measuring the equilibrium surface tension of water and a number of other solutions. The measured equilibrium surface tension of water, as a reference fluid, has good consistency with literature data. Moreover, the equilibrium surface tension of the aqueous solutions of surfactants and polymer composed of sodium dodecyl sulphate (SDS), Triton CG-110, dimethyl di-dodecyl-ammonium bromide (DDAB), and polyethylene glycol (PEG) with different molecular weights of 200, 300, 400, and 600, as well as that of the ternary solutions of SDS/PEG/water, Triton CG-110/PEG/water, and DDAB/PEG/water at 293.15 K and atmospheric pressure are measured. The equilibrium surface tension of the aqueous solutions of PEG 600 are measured at 296.15 K because PEG 600 is solid at 293.15 K. The measured data are compared with the predictions of thermodynamic models, and the results show that Redlich-Kister (RK) model has the lowest error in predicting the experimental data.
Chemical Engineering
Mohammadreza Khosravi-Nikou; Ahmad Shariati; Mohammad Mohammadian; Ali Barati; Adel Najafi-Marghmaleki
Abstract
This study presents a robust and rigorous method based on intelligent models, namely radial basis function networks optimized by particle swarm optimization (PSO-RBF), multilayer perceptron neural networks (MLP-NNs), and adaptive neuro-fuzzy inference system optimized by particle swarm optimization methods ...
Read More
This study presents a robust and rigorous method based on intelligent models, namely radial basis function networks optimized by particle swarm optimization (PSO-RBF), multilayer perceptron neural networks (MLP-NNs), and adaptive neuro-fuzzy inference system optimized by particle swarm optimization methods (PSO-ANFIS), for predicting the equilibrium and kinetics of the adsorption of sulfur and nitrogen containing compounds from a liquid hydrocarbon model fuel on mesoporous materials. All the models were evaluated by the statistical and graphical methods. The predictions of the models were also compared with different kinetics and equilibrium models. The results showed that although all the models lead to accurate results, the PSO-ANFIS model represented the most reliable and dependable predictions with the correlation coefficient (R2) of 0.99992 and average absolute relative deviation (AARD) of 0.039%. The developed models are also able to predict the experimental data with better precision and reliability compared to literature models.
Chemical Engineering
Mohammad Razaghiyan; Mahmood Reza Rahimi; Hajir Karimi
Abstract
The current work investigates the performance of a single-stage, bench-scale system using a spray dryer to treat produced water. The produced water is generated in three large reservoirs of Ahvaz, Maroon, and Mansouri fields, which have different compositions but the same high total dissolved solids ...
Read More
The current work investigates the performance of a single-stage, bench-scale system using a spray dryer to treat produced water. The produced water is generated in three large reservoirs of Ahvaz, Maroon, and Mansouri fields, which have different compositions but the same high total dissolved solids (TDS) and total organic carbon (TOC). The results of this study indicate that the newly developed bench scale rig is able to reduce the amount of TDS in the water produced in Ahvaz, Maroon, and Mansouri reservoirs to 98.78, 98.65, and 98.90, and TOC decreases the three types of the produced water to zero. Investigating the effect of independent parameters on the performance of this system using response surface methodology shows that the most effective parameters affecting the efficiency of the produced water treatment system are the entering carrier gas temperature (TGIT), the flow rate of the produced water (QL), the carrier gas flow rate entering the spray dryer (QG), and the atomizer pore size (d). Additionally, the optimal conditions are obtained as follows: TGIT = 113.7 °C, QL = 20.8 cc/min, QG = 59.9 m3/hr., and d = 0.03 mm.
Chemical Engineering
Erfan Tooraji; Ahad Ghaemi
Abstract
Separation of nitrogen from a gaseous mixture is required for many industrial processes. In this study, the adsorption of nitrogen on zeolite 4A was investigated in terms of different adsorption isotherm models and kinetics. An increase in the initial pressure from 1 to 9 bar increases the amount of ...
Read More
Separation of nitrogen from a gaseous mixture is required for many industrial processes. In this study, the adsorption of nitrogen on zeolite 4A was investigated in terms of different adsorption isotherm models and kinetics. An increase in the initial pressure from 1 to 9 bar increases the amount of adsorbed nitrogen from 6.730 to 376.030 mg/(g adsorbent). The amount of adsorbed nitrogen increased from 7.321 to 40.594 mg/(g adsorbent) by raising the temperature from 298 to 333 K at a pressure equal to one bar; however, it then dropped to 15.767 mg/(g adsorbent) when temperature decreased to 353 K. Increasing the amount of the adsorbent from 1 to 4 g decreased the specific adsorption from 67.565 to 21.008 mg/(g adsorbent) at a temperature of 298 K and a pressure of 3 bar. Furthermore, it was found that the nitrogen adsorption experimental equilibrium data are consistent with Sips and Langmuir-Freundlich models. The highest overlap was achieved through second order and Ritchie’s models.
Chemical Engineering
Gholamreza Roohollahi; Mohammadreza Ehsani
Abstract
Several mesoporous nickel-based catalysts with MgO-Al2O3 as the catalyst support were prepared using a co-precipitation method at a constant pH. The supports were prepared from the decomposition of an Mg-Al hydrotalcite-like structure which had already been prepared with Mg/Al=1. Prior to impregnating ...
Read More
Several mesoporous nickel-based catalysts with MgO-Al2O3 as the catalyst support were prepared using a co-precipitation method at a constant pH. The supports were prepared from the decomposition of an Mg-Al hydrotalcite-like structure which had already been prepared with Mg/Al=1. Prior to impregnating 10 wt.% nickel on the supports, the precursor was decomposed at several temperatures of 500, 600, 700, and 800 °C in order to elucidate the effect of calcination temperature on the physical and chemical characteristics of Mg-Al mixed oxides and the ultimate catalytic performance of the synthesized catalysts in the combined steam and dry reforming (CSDRM). The catalyst the precursor of which was calcined at 700 °C shows an excellent nickel dispersion and the highest activity among the other samples. It also exhibits the most stable performance during the long-term 36-hour run with high resistance against coke formation in the harsh condition of CSDRM.
Chemical Engineering
Mohsen Keshavarz; Ahad Ghaemi; Mansour Shirvani; Ebrahim Arab
Abstract
In this work, the dispersed phase holdup in a Kühni extraction column is predicted using intelligent methods and a new empirical correlation. Intelligent techniques, including multilayer perceptron and radial basis functions network are used in the prediction of the dispersed phase holdup. To design ...
Read More
In this work, the dispersed phase holdup in a Kühni extraction column is predicted using intelligent methods and a new empirical correlation. Intelligent techniques, including multilayer perceptron and radial basis functions network are used in the prediction of the dispersed phase holdup. To design the network structure and train and test the networks, 174 sets of experimental data are used. The effects of rotor speed and the flow rates of the dispersed and continuous phases on the dispersed phase holdup are experimentally investigated, and then the artificial neural networks are designed. Performance evaluation criteria consisting of R2, RMSE, and AARE are used for the models. The RBF method with R2, RMSE, and AARE respectively equal to 0.9992, 0.0012, and 0.9795 is the best model. The results show that the RBF method well matches the experimental data with the lowest absolute percentage error (2.1917%). The rotor speed has the most significant effect on the dispersed phase holdup comparing to the flow rates of the continuous and dispersed phases.
Chemical Engineering
Seyede Leila Ebrahimi; Mohammadreza Khosravi-Nikou; Seyed Hassan Hashemabadi
Abstract
In this research, the effects of important parameters, including the molar ratio of acetic acid to sulfur(S) , sonication time, temperature, and hydrogen the molar ratio of peroxide to sulfur on the performance of ultrasound-assisted oxidative desulfurization were studied using the response surface method ...
Read More
In this research, the effects of important parameters, including the molar ratio of acetic acid to sulfur(S) , sonication time, temperature, and hydrogen the molar ratio of peroxide to sulfur on the performance of ultrasound-assisted oxidative desulfurization were studied using the response surface method (RSM). To this end, a model fuel containing n-decane and dibenzothiophene at a concentration of 1000 ppm was used. It was found out that the temperature and acetic acid/S molar ratio were the most influencing parameters affecting the conversion of sulfur compound. The synergistic effects of the parameters were also investigated, and it was discovered that the maximum conversion of dibenzothiophene reached 98.59% when H2O2/S, acetic acid/S, temperature, and sonication time were set to 167, 330, 80 °C, and 30 min respectively. Finally, the apparent kinetics of dibenzothiophene oxidation and the activation energy of reaction were presented.
Chemical Engineering
Masoud Seidi; Mohsen Khezeli; Behrouz Bayati; Esmaeil Najafi
Abstract
In the current work, a framework is presented for amine solvent selection in gas treating process. Since the appropriate decision making in this field affects the capital and operational costs, multi attribute decision making (MADM) techniques were used to rank alternatives. The determination of criteria ...
Read More
In the current work, a framework is presented for amine solvent selection in gas treating process. Since the appropriate decision making in this field affects the capital and operational costs, multi attribute decision making (MADM) techniques were used to rank alternatives. The determination of criteria and alternatives is the most important aspect in the MADM. Criteria were divided into two categories, namely physical and process, and twelve physical indexes and nine process indexes were detected. Mono-ethanol amine (MEA), di-glycol amine (DGA), di-ethanol amine (DEA), di-isopropanol amine (DIPA), and methyl di-ethanol amine (MDEA) are intended as alternatives. The importance of the criteria was expressed by weights, and the weights were determined by the analytic hierarchy process (AHP) method. The traditional Technique for Order Preferences by Similarity to an Ideal Solution (TOPSIS) method was applied to the physical criteria with crisp data. The modified interval TOPSIS technique was used to study the process criteria with interval data. The data of the criteria and alternatives were collected from Ilam Gas Treating Company, and the solution for sour gas sweetening was ranked by the proposed approach. Based on our computations, MDEA was defined as the best amine solvent with an average ranking of 1.5.
Chemical Engineering
Ahmed Zoeir; Alireza Tabatabaei Nejad; Elnaz Khodapanah
Abstract
In sour gas flares, content like any other components in inlet gas influences adiabatic flame temperature, which, in turn, impacts on the pollutant emission. Wherever flame temperature increases, the endothermic reaction between and is accelerated, which means higher emission ...
Read More
In sour gas flares, content like any other components in inlet gas influences adiabatic flame temperature, which, in turn, impacts on the pollutant emission. Wherever flame temperature increases, the endothermic reaction between and is accelerated, which means higher emission to the atmosphere. In this work, we developed an in-house MATLAB code to provide an environment for combustion calculations. Then, this written code was used to perform sensitivity analyses on content, air temperature, and excess air ratio in sour gas flares. We used Environmental Protection Agency (EPA) reports to assign weighting indexes to each air contaminant according to its harmfulness to environment; thereafter, sour gas flaring conditions were optimized for two real field case studies, namely Ahwaz (AMAK) and South Pars, to reach the minimum integrated pollutant concentrations. The results show that each 2% increase in the content of the entrance feed may produce 0.3% additional in the exhaust. The results also confirm that decreases of 20 °F and 50 °F in the oxidant temperature cause emission to reduce by 0.5% to 1% respectively. Finally, to verify and validate our results acquired from the written MATLAB code, FRNC 2012 industrial software was used to duplicate the oxidation results for the two sour flare case studies.
Chemical Engineering
Saeed Mohammadi; Mohammad Amin Sobati; Mohammad Sadeghi
Abstract
Dilution is one of the various existing methods in reducing heavy crude oil viscosity. In this method, heavy crude oil is mixed with a solvent or lighter oil in order to achieve a certain viscosity. Thus, precise mixing rules are needed to estimate the viscosity of blend. In this work, new empirical ...
Read More
Dilution is one of the various existing methods in reducing heavy crude oil viscosity. In this method, heavy crude oil is mixed with a solvent or lighter oil in order to achieve a certain viscosity. Thus, precise mixing rules are needed to estimate the viscosity of blend. In this work, new empirical models are developed for the calculation of the kinematic viscosity of crude oil and diluent blends. Genetic algorithm (GA) is utilized to determine the parameters of the proposed models. 850 data points on the viscosity of blends (i.e. 717 weight fraction-based data and 133 volume fraction-based data) were obtained from the literature. The prediction result for the volume fraction-based model in terms of the absolute average relative deviation (AARD (%)) was 8.73. The AARD values of the binary and ternary blends of the weight fraction-based model (AARD %) were 7.30 and 10.15 respectively. The proposed correlations were compared with other available correlations in the literature such as Koval, Chevron, Parkash, Maxwell, Wallace and Henry, and Cragoe. The comparison results confirm the better prediction accuracy of the newly proposed correlations.
Chemical Engineering
Saeid Mohammadmahdi; Ali Reza Miroliaei
Abstract
Packed bed reactors have many applications in different industries such as chemical, petrochemical, and refinery industries. In this work, the effects of some parameters such as the shape and size of particles, bed size, and bed length on the hydrodynamics of the packed beds containing three spherical, ...
Read More
Packed bed reactors have many applications in different industries such as chemical, petrochemical, and refinery industries. In this work, the effects of some parameters such as the shape and size of particles, bed size, and bed length on the hydrodynamics of the packed beds containing three spherical, cylindrical, and cubic particles types are investigated using CFD. The effect of the combination of three particles types in a packed bed was also simulated. The simulation results show that flow channeling occurs in some parts of the bed which are not suitably covered by particles. It was also seen that flow channeling in the packed bed with cubic particles are more than those containing spherical and cylindrical particles. According to the CFD simulations, wake and vortex flows are created in all the beds, and the shape of particles affects these phenomena. The comparison of the pressure drop created in the packed beds indicates that the pressure drop in the packed beds having three particle types is lower than the packed beds containing only spherical, cylindrical, or cubic particles. Finally, the numerical results were compared with empirical correlations in the literature and showed good agreement.
Chemical Engineering
Farshad Torabi Esfahani; Javad Ivakpour; Mohammadreza Ehsani
Abstract
In this work, new correlations are proposed to predict the products yield of delayed coking as a function of CCR and temperature based on the experimental results. For this purpose, selected Iranian vacuum residues with Conradson carbon residue (CCR) values between 13.40-22.19 wt.% were heated at a 10 ...
Read More
In this work, new correlations are proposed to predict the products yield of delayed coking as a function of CCR and temperature based on the experimental results. For this purpose, selected Iranian vacuum residues with Conradson carbon residue (CCR) values between 13.40-22.19 wt.% were heated at a 10 °C/min heating rate and thermally cracked in a temperature range of 400-500 °C in a laboratory batch atmospheric delayed coking reactor for 2 hours. The amount of distillate (C5+-500 °C) and coke yield were measured in all the experiments, and the gas (C1-C4) product yield was calculated based on mass balance between products and feedstock in each experiment. According to the developed functions, products yield changes with CCR value linearly and is a power function of temperature. The further investigation of the results show that by a 1 wt.% increase in CCR value, the distillate yield decreases by about 2.1 wt.%, but the amount of coke and gas yields rise by 1.2 wt.% and 0.9 wt.% respectively.
Chemical Engineering
Farhad Asgharyan; Mohammadreza Khosravi Nikou; Bagher Anvaripour; Iman Danaee
Abstract
The present study is about the reduction of humic acids (HA) by electrocoagulation (EC) method. Undesirable color, odor, taste, reacting with chlorine to produce toxic materials in water, and making a complex with heavy metal ions are some unfavorable environmental consequences of HA. Platinum and graphite ...
Read More
The present study is about the reduction of humic acids (HA) by electrocoagulation (EC) method. Undesirable color, odor, taste, reacting with chlorine to produce toxic materials in water, and making a complex with heavy metal ions are some unfavorable environmental consequences of HA. Platinum and graphite as anode electrodes and platinum, titanium, and aluminum as cathode electrodes were used for this purpose. Also, solutions consisting of sodium sulfate (Na2SO4), as the electrolyte support, and humic acids at a concentration of 30 mg.l-1 were used in the reduction tests. We investigated the best condition for pollutant removal at pH values of 3, 5, and 7 and voltages of 5, 10, and 18. The samples were taken during the electrolysis and were analyzed by the pH meter and UV-visible spectrophotometer. Moreover, the oxidation phenomena on anodes surface were studied by cyclic voltammetry tests. The results confirm that the Gr/Al electrodes by coagulation phenomena shows the best performance in the elimination of HA at an electrolyte support concentration of 0.02 molar after approximately 23 min at a pH of 7 and a voltage equal to 10 V.
Chemical Engineering
Mahnaz Pourkhalil; Saeideh Tasharrofi
Abstract
Cobalt oxide catalysts supported on oxidized multi-walled carbon nanotubes (MWCNT) for the low-temperature catalytic oxidation of carbon monoxide were prepared by an impregnation-ultrasound method. These catalysts were characterized by N2 adsorption/desorption, TEM, XRD, Raman, and H2-TPR methods. The ...
Read More
Cobalt oxide catalysts supported on oxidized multi-walled carbon nanotubes (MWCNT) for the low-temperature catalytic oxidation of carbon monoxide were prepared by an impregnation-ultrasound method. These catalysts were characterized by N2 adsorption/desorption, TEM, XRD, Raman, and H2-TPR methods. The XRD and Raman results indicated that the phase of the synthesized cobalt oxide was in the Co3O4 form. The effects of cobalt oxide loading and reaction temperature were studied on the catalytic oxidation conversion of carbon monoxide. The TEM image of the best catalyst (14 wt.% metal oxide loading) revealed a good dispersion of Co3O4 over the surface of the support with an average particle size of 11-16 nm. Under the reaction conditions of T= 200-250 °C, P=1 bar, CO = 600 ppm, O2 = 5 vol.%, GHSV = 30,000 hr.−1, and Co3O4= 14 wt.%, CO conversion was 91%.
Chemical Engineering
Mehdi Ebnali; Mehdi Shahbazian; Houshang Jazayerirad
Abstract
Stripper columns are used for sweetening crude oil, and they must hold product hydrogen sulfide content as near the set points as possible in the faces of upsets. Since product quality cannot be measured easily and economically online, the control of product quality is often achieved ...
Read More
Stripper columns are used for sweetening crude oil, and they must hold product hydrogen sulfide content as near the set points as possible in the faces of upsets. Since product quality cannot be measured easily and economically online, the control of product quality is often achieved by maintaining a suitable tray temperature near its set point. Tray temperature control method, however, is not a proper option for a multi-component stripping column because the tray temperature does not correspond exactly to the product composition. To overcome this problem, secondary measurements can be used to infer the product quality and adjust the values of the manipulated variables. In this paper, we have used a novel inferential control approach base on adaptive network fuzzy inference system (ANFIS) for stripping process. ANFIS with different learning algorithms is used for modeling the process and building a composition estimator to estimate the composition of the bottom product. The developed estimator is tested, and the results show that the predictions made by ANFIS structure are in good agreement with the results of simulation by ASPEN HYSYS process simulation package. In addition, inferential control by the implementation of ANFIS-based online composition estimator in a cascade control scheme is superior to traditional tray temperature control method based on less integral time absolute error and low duty consumption in reboiler.
Chemical Engineering
Mansoor Naderi; Ghasem Zargar; Ebrahim Khalili
Abstract
Heat EXchangers (HEX) that are used in City Gate Station (CGS) systems are modeled numerically to recover the exhaust waste heat. It was tried to find the best viscous model to obtain results in accordance with experimental results and to change the heat exchanger design. This HEX is used for recovering ...
Read More
Heat EXchangers (HEX) that are used in City Gate Station (CGS) systems are modeled numerically to recover the exhaust waste heat. It was tried to find the best viscous model to obtain results in accordance with experimental results and to change the heat exchanger design. This HEX is used for recovering heat from exhaust flue gas with a mixture of 40% water and 60% ethylene glycol as the cooling fluid. Then, the effects of sizes and numbers of fins and tube rows on recovered heat rate were investigated under various pump speeds. As the first step in solving the problem, SST k–ω and RNG k–ε suitable viscous models were chosen for these kinds of problems. Secondly, a new HEX is designed at a fixed coolant speed, pipe and fin thickness, and shell dimension because of operational constraints. Finally, the best HEX with the minimum pressure drop (minimum fin number) is numerically analyzed, and the new HEX specifications were extracted.
Chemical Engineering
Mohammad Mesbah; Masumeh Jafari; Ebrahim Soroush; Shohreh Shahsavari
Abstract
Abstract In this study, a mathematical model is proposed for CO2 separation from N2/CO2 mixtureusing a hollow fiber membrane contactor by various absorbents. The contactor assumed as non-wetted membrane; radial and axial diffusions were also considered in the model development. The governing equations ...
Read More
Abstract In this study, a mathematical model is proposed for CO2 separation from N2/CO2 mixtureusing a hollow fiber membrane contactor by various absorbents. The contactor assumed as non-wetted membrane; radial and axial diffusions were also considered in the model development. The governing equations of the model are solved via the finite element method (FEM). To ensure the accuracy of the developed model, the simulation results were validated using the reported experimental data for potassium glycinate (PG), monoethanol amine (MEA), and methyldiethanol amine (MDEA). The results of the proposed model indicated that PG absorbent has the highest removal efficiency of CO2, followed by potassium threonate (PT), MEA, amino-2-methyl-1-propanol (AMP), diethanol amine (DEA), and MDEA in sequence. In addition, the results revealed that the CO2 removal efficiency was favored by absorbent flow rate and liquid temperature, while the gas flow rate has a reverse effect. The simulation results proved that the hollow fiber membrane contactors have a good potential in the area of CO2 capture.
Chemical Engineering
behrouz Bayati; Mahmoud Rahmati
Abstract
The adsorption and separation properties of 3A zeolite are investigated by using Grand Canonical Monte Carlo (GCMC) simulation. To obtain the adsorption isotherms of water, methyl mercaptan, and methane on 3A zeolite, COMPASS Force Filed is used. The adsorption isotherms of the pure components and the ...
Read More
The adsorption and separation properties of 3A zeolite are investigated by using Grand Canonical Monte Carlo (GCMC) simulation. To obtain the adsorption isotherms of water, methyl mercaptan, and methane on 3A zeolite, COMPASS Force Filed is used. The adsorption isotherms of the pure components and the ternary mixtures of water, methyl mercaptan, and methane on 3A zeolites are calculated. The Sips Model is taken into account for the description of water adsorption on 3A zeolite. In addition, the effects of pressure and temperature on the adsorption of components are examined. The results demonstrate that the water has high adsorption selectivity on 3A zeolite, and this kind of adsorbent is a good candidate for the dehydration of natural gas.
Chemical Engineering
Ahad Ghaemi; Vahid Hashemzadeh; Shahrokh Shahhosseini
Abstract
In this research, the reactive absorption of carbon dioxide in an aqueous solution of NH3, H2O, and NaOH has experimentally been investigated. The experiments were carried out in an absorption pilot plant in different operational conditions. The composition and temperature of both gas and liquid phases ...
Read More
In this research, the reactive absorption of carbon dioxide in an aqueous solution of NH3, H2O, and NaOH has experimentally been investigated. The experiments were carried out in an absorption pilot plant in different operational conditions. The composition and temperature of both gas and liquid phases were obtained during the column height. The concentration of molecular and ionic species in the liquid phase was calculated using the principles of electrolyte and Pitzer model. In the experiments, the effect of sodium hydroxide concentration on carbon dioxide absorption was considered. The results revealed that the concentrations of ionic and molecular species in the liquid phase drastically influence the absorption rate of carbon dioxide. Also, the results showed that the absorption rate of carbon dioxide was increased by increasing ammonia and sodium hydroxide concentration.
Chemical Engineering
Farhad Salimi; Shahab Ayatollahi; Mohsen Vafaie Seftie
Abstract
In this study, asphaltene deposition from crude oil has experimentally and theoretically been studied using a test loop and an accurate temperature monitoring during a laminar flow. The effects of oil velocity and surface temperature on the thickness of asphaltene deposition were investigated. The results ...
Read More
In this study, asphaltene deposition from crude oil has experimentally and theoretically been studied using a test loop and an accurate temperature monitoring during a laminar flow. The effects of oil velocity and surface temperature on the thickness of asphaltene deposition were investigated. The results show that asphaltene deposition thickness increases by increasing surface temperature. As the oil velocity increased, less deposition was noticed in this experimental study. The thermal approach was used to describe the mechanisms involved in this process, and the results of data fitting showed that there was good agreement between the results of the proposed model and the measured asphaltene deposition rates. Moreover, the theoretical study of deposition process showed that the rate of asphaltene deposition was inversely related to velocity, which was proved by the experimental results.