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Abstract 

The improvement in the temporal resolution of seismic data is a critical issue in hydrocarbon 
exploration. It is important for obtaining more detailed structural and stratigraphic information. Many 
methods have been introduced to improve the vertical resolution of reflection seismic data. Each 
method has advantages and disadvantages which are due to the assumptions and theories governing 
their issues.� In this paper, we improve the temporal resolution of reflection seismic data using the 
logarithmic time-frequency transform method. This method has minimum user-defined parameters.�
The algorithm uses valuable properties of both the time-frequency transform and the cepstrum to 
extend the frequency band at each translation of the spectral decomposing window. In this method, 
the displacement of amplitude spectrum by its logarithm is the basic idea of the algorithm. We tested 
the mentioned algorithm on both synthetic and real data. The results of the both tests show that the 
introduced method can increase the temporal resolution of seismic data. 

Keywords: Seismic Temporal Resolution, Time-frequency Transform, Logarithmic Method, 
Enhancing Temporal Resolution 

1. Introduction 

There are two types of resolutions in surface reflection seismic data, namely horizontal resolution and 
vertical resolution. The vertical or temporal resolution is expressed by the tuning thickness and the 
horizontal or spatial resolution is expressed by the Fresnel zone (Badley, 1985). The improvement in 
the temporal resolution of seismic data is a critical subject in hydrocarbon exploration and 
characterizing thin-layered hydrocarbon reservoirs. It is used for obtaining more detailed structural 
and stratigraphic information.� 

Tuning thickness is defined as a quarter of the dominant wavelength at the position of the target layer 
(Sheriff and Geldart, 1995). The tuning thickness is related to the interval velocity of target layer and 
dominant frequency of the traveling wave at the depth of the target layer. Therefore, the increase in 
the dominant frequency of seismic data can help to improve the temporal resolution. 

Many methods have been introduced to increase the vertical resolution of reflection seismic data. 
Inverse Q-filter (Wang, 2008), different deconvolution methods (Yilmaz and Doherty, 2001) and 
time-variant spectral whitening (Yilmaz and Doherty, 2001) are the basic methods of the resolution 
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improvement. In the deconvolution procedure, the band limited seismic source signature is 
compressed by various methods to increase the frequency band of seismic source wavelet. 

The wavelet transform and time-frequency representation are the basis of many methods of vertical 
resolution improvement to seismic data (Matos and Marfurt, 2014; Sajid and Ghosh, 2014; Shang and 
Caldwell, 2003; Zhou et al., 2014). Shang and Caldwell (2003) improved the bandwidth of seismic 
data based on high-order cumulant wavelet analysis. Matos and Marfurt (2014) broadened the seismic 
trace spectrum by creating a high resolution seismic trace guided by the complex continuous wavelet 
transform ridges detected along the scales. Zhou et al. (2014) proposed an improved time-frequency 
spectral modeling deconvolution method to enhance the seismic temporal resolution. 

Cepstrum analysis is one of the mathematical tools frequently used in seismic data processing. Herra 
and van der Baan (2012) applied the cepstrum theory to estimate the seismic wavelet. In this paper, 
the cepstrum theory (Oppenheim et al., 1997) was used to improve the temporal resolution of 
reflection seismic data. The inverse Fourier transform of the logarithm of the amplitude spectrum of a 
signal is named the cepstrum (Sajid and Ghosh, 2014). Herein, the cepstrum was extended to time-
frequency representation. The mentioned algorithm is applied to synthetic and real seismic data.  

2. Methodology 

First, the method of resolution improving based on cepstrum in Fourier domain is introduced. This 
method consists of three steps.� In the first step, the time domain signal,  x(t), is transformed to 
frequency domain (f) by Fourier transform formula (Proakis and Manolakis, 2007) as given in 
Equation 1. Then, the amplitude and phase spectrum are calculated from the Fourier transform of 
signal as denoted in Equation 2. 
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where, ( )x t  is the time domain signal, ( )X f  is the Fourier transform of the time domain signal, and 

( )A f  and ( )fF  are the amplitude and phase spectrum of time domain signal respectively. In the 

next step, the amplitude spectrum of the signal is extended by replacing it with its logarithm. The 
phase spectrum of the signal remains unchanged in this procedure.  

In the third step, the minimum value of the logarithmic amplitude spectrum subtracted from all 
spectral values to make the logarithmic amplitude spectrum positive. In order to make the total energy 
of logarithmic amplitude spectrum equal before and after the whitening, the logarithmic amplitude 
spectrum is normalized by its total energy (Sajid and Ghosh, 2014). The high resolution seismic trace 
can be reconstructed by using the normalized logarithmic amplitude spectrum and the unchanged 
phase spectrum.  

The mentioned algorithm was tested on a 15 Hz Ricker wavelet (Sheriff and Geldart, 1995) and the 
results are shown in Figure 1. Figure 1 (a, b, c) shows the time domain original Ricker wavelet and its 
amplitude and phase spectrum respectively. The normalized logarithmic amplitude spectrum and the 
original phase spectrum are shown in Figure 1 (e, f). The inverse Fourier transform of the modified 
amplitude and the original phase spectra was calculated to gain the improved resolution seismic trace 
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which is shown in Figure 1 (d). Comparing Figures 1 (a) and (d) 
can improve the temporal resolution of seismic trace. Since the amplitude spectrum can be changed in 
the above mentioned process, the obtained wavelet cannot 
However, the high resolution wavelet is also close to the Ricker wavelet and increasing the resolution 
of the data is more important than this.

Figure 1 
(a) Input wavelet: 15 Hz Ricker wavelet in time domain and its (b) amplitude and (c) phase spectrum. (d) 
Reconstructed high resolution wavelet from (e, f) the normalized logarithmic amplitude spectrum and the 
original phase spectrum of input wavelet.

Because of the Fourier transform limitations in analyzing non
the Fourier transform 
There are various types of time
transform (STFT) 
1946). The STFT of a time domain signal,
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representation of time domain signal. 
both Fourier and STFT transform
representation, the Gaussian window with a length equal to one quarter of the signal length
The Gaussian window is shifted by one sample along the time axis. 
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Figure 2 
(a) 40 Hz Ricker wavelet in 
transform. 

The method of seismic resolution improving based on cepstrum in STFT domain also consists of three 
steps (Sajid and Ghosh, 2014)
by using the Gaussian window as described in Eq
logarithmic amplitude of the 
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can obtain the high resolution seismic trace by 
the original phase spectrum as described in Equations 8 and 9
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The flowchart of the abovementioned method is shown in Figure 3. The method of seismic resolution 
improving based on cepstrum in STFT domain was tested on 40 Hz Ricker wavelet. In Figure 4, the 
40 Hz Ricker wavelet before and after the application of the algorithm and their STFT spectrogram 
are displayed. As can be seen, the employed algorithm compacted the wavelet in time domain while 
extended it in frequency domain without generating false features. 

 

Figure 3 
Flowchart of the logarithmic time-frequency transform method for the improvement in seismic temporal 
resolution. 
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Figure 4 
(a) Input wavelet: 40 Hz Ricker wavelet in time domain, (b) its STFT spectrogram
and (d) its STFT spectrogram

The results of the mentioned algorithm are affected by the length of the frequency smoothing window 
in time-frequency repr
various lengths of frequency smoothing window. As can be seen, 
enhances the temporal resolution
the appropriate window is a trade
one-fourth the length of the 

Figure 5 
Reconstructed high resolution wavelet with the length of frequency windo
length, (b) eighth of signal length, (c) sixth of signal length, (d) a quarter of signal length, (e) half of signal 
length, and (f) signal length
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(c) reconstructed wavelet 

The results of the mentioned algorithm are affected by the length of the frequency smoothing window 
the results of the employed algorithm for 

the window length 
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the window length equal to 
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length, (b) eighth of signal length, (c) sixth of signal length, (d) a quarter of signal length, (e) half of signal 
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3. Results�and discussion 

3.1. Synthetic data 

To investigate the efficiency of the abovementioned algorithm, the employed method was applied to a 
synthetic 2D seismic section. The geological model used to generate the synthetic 2D seismic section 
is shown in Figure 6. Figures 7a and 7b show the free-noise synthetic seismic section and its average 
amplitude spectrum respectively. The synthetic data consist of a single reflector, a thin layer, and a 
wedge-shape model. Due to the low temporal resolution�in original synthetic seismic section, it is not 
possible to separate the reflections from the top and bottom of the thin layer. Moreover, the reflections 
from the top and bottom of the edge are detectable at trace 25.  

The result of applying the method to the synthetic�seismic section is shown in Figure 7c. As can be 
seen, the temporal resolution of seismic section is dramatically increased.�The reflections from the top 
and bottom of thin layer� are fully recognizable. It can be observed in the wedge model that the 
reflections, which were started to full interference at trace 25, were still separable up to trace 39. The 
average amplitude spectrum of the output seismic section is shown in Figure 7d. To compare the 
results more accurately, the amplitude spectrums of two seismic traces (No. 10 and 31) before and 
after the seismic resolution enhancement are displayed in Figures 7e and 7f. 

 

Figure 6 
Synthetic geologic model to generate the synthetic seismic data. 
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Figure 7 
(a) Free-noise synthetic seismic section and (b) its average amplitude spectrum; (c) 
after the application of the propose method and (d) its average amplitude spectrum; (e) and (f) the amplitude 
spectrum of 31st and 10

To evaluate the performance of the method in the presence of noise, the white Gaussian noise 
added to the synthetic seismic section (signal to noise ratio equal to 21 dB) and the method 
applied to the noisy data. 
good even in the presence of noise.

We compared the obtained results of the synthetic data in both noisy and noise
results of frequency domain deconvolution 
deconvolution is performed by free MATLAB toolbox entitled CREWES. As can be seen in Figure 
9a, the performance of the two techniques is very similar in the noise free synthetic data case. 
However, it can be realized that the frequency domain deconvolution has created some noise in the 
output. The mentioned disadvantage
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output. The mentioned disadvantage�becomes more visible in noisy data (Figure 9b). 
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Figure 8 
(a) Noisy synthetic seismic section and (b) its average amplitude spectrum; (c)
after the application of the propose method and (d) its average amplitude spectrum; (e) and (f) the amplitude 
spectrum of 31st and 10

Figure 9 
(a) Free noise synthetic seismic section (Figure 7a) after the application of the frequency domain deconvolution 
and (b) its average amplitude spectrum; (c) noisy synthetic seismic section (Figure 8a) after the application of 
the frequency domain deconvo
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The sensitivity to noise of the seismic resolution improving method based on cepstrum in STFT 
domain was investigated 
10 shows the results of 
12.5, and 9.5 dB. It can be seen that 
ratio is 14 dB. 

Figure 10 
Results of applying the employed method for noisy synthetic data with different values of the signal to noise 
ratio: (a) 18 dB, (b) 14 dB, (c) 12.5 dB, and (d) 9.5 dB

3.2. Field data 

In addition, the method 
southwest of Iran. The real seismic section
Figures 11a and 11b.
application of the propose
frequency bandwidth of 
Moreover, the obtained results of the real data 
deconvolution shown in Figure 11
deconvolved section 
real seismic data 
look, three windows of 
Figure 12. When comparing their amplitude spectra as shown in Figure 13, it can be 
seismic data after applying the algorithm have a broader
data.  
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southwest of Iran. The real seismic sections before and after the application of method are shown in 

a and 11b. The time-frequency representation of real seismic data before and after th
application of the proposed algorithm is shown in Figure
frequency bandwidth of the seismic data is expanded during applying the proposed algorithm. 

obtained results of the real data were compared 
deconvolution shown in Figure 11c. It is clear that the
deconvolved section reduces the quality of data. It can be easily observed that the resolution of the 
real seismic data is considerably increased and many hidden features 
look, three windows of the data before and after applying the algorithm 

When comparing their amplitude spectra as shown in Figure 13, it can be 
seismic data after applying the algorithm have a broader
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Figure 11 
Real seismic data (a) before and (b) after the application of the proposed algorithm; (c) real seismic data after 
the application of the frequency domain deconvolution; the time
(d) before and (e) after the application of the proposed algorithm

Roshandel Kahoo and S. Gholtashi / An Improvement in Temporal Resolution of 

Real seismic data (a) before and (b) after the application of the proposed algorithm; (c) real seismic data after 
application of the frequency domain deconvolution; the time

(d) before and (e) after the application of the proposed algorithm

An Improvement in Temporal Resolution of 

Real seismic data (a) before and (b) after the application of the proposed algorithm; (c) real seismic data after 
application of the frequency domain deconvolution; the time-frequency representation of real seismic data 

(d) before and (e) after the application of the proposed algorithm. 

An Improvement in Temporal Resolution of Seismic…  37 

 

Real seismic data (a) before and (b) after the application of the proposed algorithm; (c) real seismic data after 
frequency representation of real seismic data 



38 Iranian Journal of Oil & Gas Science and Technology, 

�

Figure 12 
(a, b) The blue window in Figure 11 before and after the application o
d) the green window in Figure 11 before and after the application of the proposed algorithm respectively; (e, f) 
the black window in Figure 11 before and after the application of the proposed algorithm respectivel

Figure 13 
Average amplitude spectrum of (a) the blue window in Figure 9 before (blue line) and after (red dashed line) 
resolution enhancement, (b) the green window in Figure 9 before (blue line) and after (red dashed line) 
resolution enhancement and 
resolution enhancement

4. Conclusions 

A new algorithm 
logarithmic time-
time-frequency transform and the cepstrum to extend the frequency band at each translation of the 
spectral decomposing window. The result
real seismic data show that the introduced method can increase the temporal resolution of 
data. Furthermore
improve the temporal resolution of the seismic data w
employed method makes 
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�

5. Nomenclature 

t  : Time 
f   : Frequency 

( )x t  : Seismic trace in time domain 

( )X f   : Seismic trace in frequency domain 

( )A f   : Amplitude spectrum of seismic trace 

( )fF   : Phase spectrum of seismic trace 

( ),X t f   : Time-frequency transform of seismic trace 

( )g t   : Gaussian window for time-frequency transform computing 

( ),A t f   : Amplitude spectrum of time-frequency transform of seismic trace 

( ),t fF  : Phase spectrum of time-frequency transform of seismic trace  

( ),LF t f   : Logarithm of amplitude spectrum of time-frequency transform of seismic trace 

( ),LFP t f   : ( ),LF t f  which is made purely positive 

( ),LFPE t f  : ( ),LFPE t f  which is normalized 

( )ˆ ,X t f   : Modified time-frequency transform of seismic trace 

( )x̂ t   : Estimated high resolution seismic trace 
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