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Abstract

In this work, artificial neural network (ANN) hasén employed to propose a practical model for
predicting the surface tension of multi-componeriktunes. In order to develop a reliable model
based on the ANN, a comprehensive experimental slgttéancluding 15 ternary liquid mixtures at

different temperatures was employed. These systemsist of 777 data points generally containing
hydrocarbon components. The ANN model has beenlalge® as a function of temperature, critical
properties, and acentric factor of the mixture aditg to conventional corresponding-state models.
80% of the data points were employed for trainifgNAand the remaining data were utilized for
testing the generated model. The average absdalative deviations (AARD%) of the model for the

training set, the testing set, and the total daiatp were obtained 1.69, 1.86, and 1.72 respdgtive

Comparing the results with Flory theory, Brok-Bieduation, and group contribution theory has
proved the high prediction capability of the ateirmodel.
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1. Introduction

Surface tension is one of the important charadtesiof liquids which influences various surface
phenomena such as creating bubbles, foams, drogetslsion, and heterogeneous liquid phases
(Brocos et al., 2005; Gharagheizi et al., 2011chs&m-Nia et al., 2010; Poling et al., 2000; Roesta
al., 2011; Tahery et al., 2005). Certainly, theed®mination of physical and chemical properties of
liquids is unattainable without considering surfaeasion. In chemical and petroleum engineering
operations such as separation, distillation, ektvac and adsorption, the surface tension of the
mixtures 6, is an essential parameter (Bainbridge and Sawihtio 1964; EI-Bourawi et al., 2006;
Rosen and Kunjappu, 2012; Syeda et al., 2004; ZAwefp and Harmens, 1958). Moreover, the
surface tension of the reservoir fluid plays a kele in enhancing oil recovery (EOR) and it has
different effects on capillary pressure, residubkaturation, and relative permeability (Dake, 200
Donaldson et al., 1985; Sheng, 2010; Tarek Ahmetipp

The surface tension of mixtures depends on sudaggosition and temperature. However, it is not a
linear function of the surface tension of ingrettielbecause the surface compaosition is differemhfro
bulk and cannot easily be defined. Consequentigpls and linear models for the prediction of the
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surface tension in multi-component systems arepinegble (Poling et al., 2000).

In the past years, several methods, which are lysdatived from thermodynamic definitions, have
been presented to calculate the surface tensitreahixtures. Butler (1932) proposed an equation to
predict surface tension which has widely been agpid developing other methods such as Redlich-
Kister (1948) correlation for binary systems. Spramd Prausnitz (1967) proposed a model for non-
ideal mixtures similar to Butler's model. Jufu &t(@986) developed a correlation based on thel loca
composition model using Wilson's equation as anvigtmodel. Suarez et al. (1989) used the
modified UNIFAC group-contribution method—developleg Larsen et al. (1987)—to compute the
activity coefficients in the surface and bulk ptssghibao et al. (1990) combined the UNIFAC model
with Butler's equation for calculating the surfaeasion of both binary and multicomponent systems.
Furthermore, several approaches have been propfisedpredicting the surface tension of
multicomponent systems in recent years. Sonawaddé<amar (1999) correlated the surface tension
of binary liquid mixtures based on Butler's equati€hunxi et al. (2000) presented a two-parameter
surface tension equation for binary and multicongmarsystems based on thermodynamic definitions
and an expression for Gibbs free energy. Pineied. €2001) proposed a model using Kretschmer and
Wiebe (1954) results for estimating the compositiérthe surface layer in binary liquid mixtures.
Santos et al. (2003) presented a new equation melate the excess surface tension of binary
mixtures obtained from Butler's equation for calting surface tension in the binary and ternary
liquid mixtures. Miqueu et al. (2004) used the geat theory of fluid interfaces to compute the
surface tension of binary and ternary hydrocarbakrtures. Brocos et al. (2005) employed the
extended Langmuir model to define the behavior ofaty systems as a function of bulk
concentration. Tahery et al. (2005) correlatedstiméace tensions of aqueous and non-aqueous binary
solutions utilizing the excess number of molecldsers and free energy change in the surface region
(Shereshefsky, 1967). Ramirez-Verduzcoet al. (200&8ined a method based on the UNIFAC group
contribution model for the prediction of the sudaiension. In this method, the analogy between
bubble point pressure and vapor composition wad fmecalculations. Lin et al. (2007) applied the
gradient theory to estimating the surface tensigouce fluids and binary mixtures. In this techrequ
the Helmholtz free energy density and the bulk probps were calculated using volume-translated
Peng—Robinson (VTPR) and Soave Redlich—-Kwong (VTBRI§uations of state. Gardas and
Coutinho (2008) used quantitative structure—prgpegtationship (QSPR) for predicting the surface
tensions of ionic liquids. Bitaab et al. (2008) pveed a model based on the perturbation theory of
fluids to correlate the surface tension of pure biary hydrocarbon mixtures. Mohsen-Nia et al.
(2010) correlated the surface tension of mixturgsabnew model obtained from coupling scaled
particle theory (SPT) and the MMM equation of state

Recently, artificial neural network (ANN) has exderely been taken into consideration for the
prediction of thermo-physical properties. Gharaghest al. (2011) utilized artificial neural
network—group contribution (ANN-GC) method to cdéte the surface tension of pure compounds.
Roosta et al. (2012) applied ANN for modeling thieface tension of pure organic compounds. They
used critical pressure, acentric factor, reducetptrature, reduced normal boiling temperature, and
specific gravity at the normal boiling point as thput parameters to the ANN. In our previous work,
(Parhizgar et al., 2012) we proposed a new modsidan the ANN for the prediction of the surface
tension of binary mixtures. 105 binary mixturestadming 2250 data points were applied to generate
the new model using critical pressure, criticalwoé, reduced temperature, and acentric factor of
pure component as the inputs.
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Although there are varied approaches to the priedicdf the surface tension, they have some
limitations. Most of the mentioned methods haveement complexity and require lots of input
parameters. Additionally, the majority of them dut offer a precise estimation for new systems. On
this account, it is inferred that an effective picad method with a high prediction capability wdulle
required (Eslamimanesh et al., 2011; Mohammadi.e2810; Mohammadi and Richon, 2010). In
this work, an ANN method has been applied to gdeeeanew comprehensive model for the
prediction of the surface tension of ternary miggurin fact, the current work is a complementary
study for our previous investigations (Parhizgaalgt2012). For the evaluation of the accuracthef
obtained model, the results have been comparedseitte well-known theories.

2. Artificial neural networks

In recent years, artificial neural network (ANN)sha&idely been employed for modeling complex
nonlinear systems, especially for the predictiorth@modynamic properties (Boozarjomehry et al.,
2005; Dehghani et al., 2006; Eslamimanesh et #1112 Eslamloueyan and Khademi, 2009;
Eslamloueyan and Khademi, 2010; Gharagheizi eR@lQ; Gharagheizi et al., 2011a; Gharagheizi et
al., 2011b; Moghadassi et al., 2010; Mohammadi.e2810; Mohammadi and Richon, 2010). ANN
is known as a powerful approach among black box atmogl approaches. This method does not
involve detailed theories and trains the functidpadf the presented input-output data automatycall
(Eslamimanesh et al., 2011; Mohammadi et al., 28kdhammadi and Richon, 2010).

There are different types of ANN methods such asl florward, radial basis function, and auto
associative network. Feed forward network (FF) Iresn frequently applied to engineering studies,
especially in chemical engineering because ofiitgple structure and mathematical analysis. Back
propagation (BP) is the most common type of FF ndtwbecause it has a straight instruction
procedure (Boozarjomehry et al.,, 2005; Dehghaniakt 2006; Eslamimanesh et al.,, 2011;
Eslamloueyan and Khademi, 2010; Gharagheizi e2@L0; Gharagheizi et al., 2011a).

The network of ANN is composed of an input layems hidden layers (at least one), and one output
layer. Layers contain one or more simple intermalsunamed neuron. The number of neurons in the
input and output layers are consistent with the memmof input and output variables. It has
emphasized that a network with appropriate hiddgrers and neurons is capable to predict any
functionality. Neurons are associated to each difyereight functions; each neuron receives signals
from previous layers proportional to the weight dtions and generates an output spreading to
forward layers. In each layer, the neuron vah‘@a i€ calculated by Equation 1 (Boozarjomehry et al.
2005; Eslamloueyan and Khademi, 2009; EslamlouayahKhademi, 2010).

a =l (W, x4+ ) @)

where,i, |, w, andb are layer number, neuron number in layaveight function and bias respectively.
The biases are added to the neurons for adjudtm@utputs; it makes the simulation be performed
faster and more accurate. In Equationf 1s the transfer function including linear and noeér
algebraic expressions changing the input of eagdr e the output. Classically, log sigmoid, tangen
sigmoid, and linear transfer functions are impletedrin the networks (Boozarjomehry et al., 2005;
Dehghani et al., 2006; Gharagheizi et al., 2010ar&pheizi et al., 2011a; Gharagheizi et al., 2011b;
Gharagheizi et al., 2011c; Parhizgar et al., 2Rdhsta et al., 2011). After defining the structafe
the network, i.e. the number of hidden layers, aesir and transfer functions, unknown parameters
(the weight functions and biases) would be adjustectach the outputs of the experimental values.
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Network structure should be in the lowest possim&ime; Understanding the best structure for
acceptable results is a challenging step and iallysperformed through trial and error procedure.
There are two major steps in the process of ANNstrantion, namely training and testing. In the
training step, the input data and the correspondirguts are presented to the network and the weigh
functions and biases are accordingly adjustedttinathe minimum imprecision. In the BP network,
deviations are returned back to the network fodjiesting the weight functions and biases. To
develop an acceptable network, a suitable dispersidghe training data is required (Boozarjomehry
et al., 2005; Eslamloueyan and Khademi, 2009; Hsla@yan and Khademi, 2010). After the training
step, the network will be able to predict new dadants (test). There are different algorithms tuad
weights and biases in training step; for instahesenberg-Marquardt is a frequently used algorithm.
Detailed definitions about ANN can be found in ftiterature (Braspenning et al., 1995; Haykin,
1999; Kwok et al., 2010; Murray, 1994; Priddy anellgr, 2005).

3. Modeling and results

3.1. Developing an ANN model

The first step to develop an ANN model for the euntrstudy is the investigation of the parameters
affecting the surface tension of multicomponentays; these parameters organize the inputs of the
network. Through an extensive literature reviewyds inferred that the corresponding-state models
have more competency to be followed for defining thput parameters. The corresponding-state
models constitute a significant sub-group of pridgdéc thermodynamic models and have more
available and easy-to-use inputs. In this regaritical pressure and volume, reduced temperature,
and an acentric factor of the mixture were seleetedhe input parameters. Considering the linear
mixing rules used in Brok-Bird model (Brock and dBirl955; Pandey et al., 2004), the input
parameters including the mixture reduced tempesafiy ), critical pressureR; ), critical volume
(Vem), and the acentric factowf) were defined as follows (Equations 2-6):

T
TR,m:?’m (2)
3
Tc,m = Z Xi X Tc,i (3)
i=1
3
I:z:mzzxix F?ZI (4)
i=1
3
Vem = Z X%V, (5)
i=1
3
a)c,m = zxi X wc,i (6)

I
Uy

where, T.;, P.i, Ve, @i, andx; are critical temperature, critical pressure, caitivolume, the acentric
factor, and the mole fraction of componénh the mixture respectively. Critical propertiasdathe
acentric factor of the components were quoted fRemry's Chemical Engineers' Handbo@&reen
and Perry, 2007).

15 ternary liquid systems containing 777 experimledata points were utilized to create the ANN
model. Table 1 presents the selected mixtures gypeomposed of hydrocarbons. It should be noted
that the data related to the surface tension aofatgr mixtures are so restricted. We have tried to
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collect relatively all of the accessible data ire thterature, considering that ionic liquids or
refrigerants are studied in this work. As it is wioin Table 1, the selected data lies in a diverse
temperature range (287.81 to 328.15 K).

Tablel
Selected ternary mixtures; the number of data p@nt temperature range.
Compound Compound Compound Number of Temperature
. Reference
1 2 3 data points range (K)
Water Ethyl Butyrate  Methanol 43 303.15 Kljevcza(? (;g etal,
Diethyl Mosteiro et al.,
Carbonate p-Xylene Decane 73 298.15 2009
Sulfuric Acid  Dimethylamine Water 131 297.35 Hyvarzlggz etal.,
N,N-Dimethyl
Heptane Toluene |mg y 73 287.81-317.86 Kahl et al., 2004
formamide
Water Acetone Toluene 158 288.15-328.15 End;cr)(i?et al.
Johnson et al.,
Water n-Butyl Acetate 1-Propanol 68 303.15 2008
Pandey et al.,
n-Hexane Cyclohexane Benzene 10 298.15 2001
Pandey et al.,
Cyclohexane n-Heptane Toluene 10 298.15 2008
n-Pentane n-Hexane Benzene 10 298.15 Pandey etal.,
2008
2,2,4Trimethyl Pandey et al.,
Pentane Cyclohexane Decane 44 298.15 2008
Hexane Decane Hexadecare 24 303.16 Pande;;: ; d Part,
Nitromethane Benzene 1-Propanol 31 296.15—299.9§V||Chigllssoet al.
2-Propanol Toluene Furfural 30 293.65-300.85 Mlchi\grlssoet al.
_ Michaels et al.,
Toluene Benzyl Alcohol Ethyl Acetate 31 295.45-302.85 1950
Ethyl Kijevcanin et al.,
Water Propionate Methanol 41 303.15 2004

Due to the frequent usage of back propagation fieedard networks in the field of
thermodynatrits, this type of ANN was utilized. Furthermoree tiiverage absolute relative deviation

(AARD%) was chosen to evaluate the errors. The AARPquation is defined by the following
equation:

n a. -0
AARDV = 100x 2 x 371 %o o | .
n

i=1 a-i,exp

where,o i exp 0 ipra,» @ndn are the experimental data, predicted data, anduher of data set used in
the training step respectively. In the trainingpsteevenberg-Marquardt algorithm was utilized for
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analyzing the errors and adjusting the network mpatars. To design ANN, 80% of the data were
randomly selected for network training and the veste applied to testing.

For keeping away from over-fitting, the lowest nwenbf adjustable parameters should be considered.
To meet such a requirement, the network structues weveloped based on a trial and error
investigation; at the first step, the minimum numbghidden layers and neurons were selected and
the procedure was then pursued by the examinatiodifierent networks with various transfer
functions, the number of hidden layers, and neutonattain satisfactory results. Eventually, the
network with 2 hidden layers composed of 6 and Grows was selected as the most excellent
network. The topology architecture of the desigWédN is depicted in Figure 1. Log sigmoid,
tangent sigmoid and linear transfer functions hagen selected for the input, hidden, and output
layers respectively.
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Figurel
Neural network architecture.

As it is indicated in Figure 1,is the input layer, andk are the two hidden layers, ah the output
layer. According to the above definitions, the doues generating the outputs in the trained ANN are
as follows:

5
outpui(,) =>_ kx w_, + b (8)
n=1
6
k, = tangensigmoid D’ jx w_, + b | 9)
x=1
. . . 4 .
j, =logsigmoid(}_ i,xw _; +b) (10)
p=1

For instance\;\/jét_k1 represents the weight value between neuron 4erfitet hidden layerJ,) and

neuron 1 in the second hidden layla).(Log-sigmoid and tangent sigmoid functions aréneel by:

logsigmoid( ¥ =

11
1+e™” (11)
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eX - e_X (12)

e +e

tangensigmoid (X)=

The values of weight functions in the input laybidden layers, and the output layer have been
presented in Tables 2 to 4; also in addition, Tdblehows the biases associated with the transfer
functions of each layer.

Table2
First layer weight functions/{.).
X p=1 p=2 p=3 p=4
1 202.0213 43.2631 181.1284 7.0159
2 45.5452 60.262 20.0581 1.9991
3 0.106 -0.4796 -2.1804 2.5569
4 4.0947 -1.5378 -3.9558 2.8492
5 13.8789 -0.2956 3.4186 -6.7226
6 137.6217 -4.363 3.5732 -9.2149
Table3
Second layer weight functiong,).
y x =1 X =2 X =3 X =4 X =5 X=6
1 24.0978 0.922 -91.3867 25.9599 -6.4133 -4.2283
2 -0.4556 -3.3241 -1.6047 -1.7602 2.0099 -6.4085
3 22.1346 -20.7459 -124.175 132.3635 208.7892 -24.866
4 -1.8108 -5.6826 -58.231 15.7797 2.5286 -9.0837
S 3.4065 0.0684 82.3987 -25.8016 10.0343 1.177
Table4
Third layer weight functionsWy.in).
N y=1 y=2 y=3 y=4 y=5
1 -17.7458 -13.6074 -8.1823 -5.6212 -26.5498
Table5
The biases.
I bji byi bii
1 -101.857 34.2327 15.9753
2 -29.3131 -3.4167
3 1.4751 -9.0583
4 0.817 48.2031
5 -2.4349 -56.4983
6 -24.4038
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3.2 Evaluation of the model

Figures 2 tad demonstrate the regression of the experimentaé\ancthe predicted/calculated valt
of surface tension fcthe training, testingand total dat:
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Figure?2
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Surface tension predicted by ANN verthe experimental da for the test data.
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Figure4
Surface tension predicted/calculated by ANN vethe experimental data for the total data.

The imprecisionof the ANN model(in terms of AARD%)for estimating thesurface tension ¢
ternary liquid systems fcthe training, predictedand total data pointwasobtained 1.69, 1., and
1.72 respectively. The maximum value of AARD% wétsined fromtoluene/lenzyl alcohol/ethyl
acetatamixture (3.52%, while the minimum one was accomplished water/ethyl butyrate/methan
(0.93%).The AARD%values of all the studieslystems are presented in Tabl

In order to make a more sensible assessment, shikgef the ANN for some systems were compi
with previous we-known models, i.e. Flory theory, Br-Bird equation,and group contributio
theory (Brock and Bird, 1955; Pandey et al., 2008ble 7 presents ttcomparativeresults; as it is
shown, the accuracy of the ANN model is more tthethree studied models; in fi, the differences
betweenthe errors are so nsiderable. This model could be utilized as a neactiral method fo
calculating thesurface tension of ternary mixtu, particularlyin engineering calculations. It shot
be noted thaFlory theory, group contribution the(, and Brok-Bird equation ggire at least two ¢
three interactions or adjustable parameterspredicting thesurface tension of each ternary mix,
while the ANN model has overcome this disadvantin other wordsthe developed model does 1
require any adjustable params. The aim of this work is developing a general niadgch could be
utilized without requiring detailed theories of thermodynesniMoreover, the precise calculations
design is an essential necessity in the processbsas separation, distillatiorxtraction, adsorptic,
and EOR, whicltould be provided by the presented mc
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The obtained AARD% values for the pregi?:tt)ilc?n(ﬁof Heface tension of ternary liquid mixtures.
Compound 1 Compound 2 Compound 3 AARD%
Water Ethyl Butyrate Methanol 0.93
Diethyl Carbonate p-Xylene Decane 1.32
Sulfuric Acid Dimethylamine Water 1.31
Heptane Toluene N,N-Dimethylformamide 2.45
Water Acetone Toluene 1.37
Water n-Butyl Acetate 1-Propanol 2.33
n-Hexane Cyclohexane Benzene 1.90
Cyclohexane n-Heptane Toluene 3.23
n-Pentane n-Hexane Benzene 1.43
2,2,4-Trimethyl Pentane Cyclohexane Decane 1.44
Hexane Decane Hexadecane 1.89
Nitromethane Benzene 1-Propanol 2.31
2-Propanol Toluene Furfural 2.68
Toluene Benzyl Alcohol Ethyl Acetate 3.52
Water Ethyl Propionate Methanol 1.04
Total 1.72

Table7
Comparison of Flory theory, Brok-Bird equation, agrdup contribution theory with the obtained ANN aet

AARD %
Ternary mixture
Flory theory ANN model
n-Hexane Cyclohexane Benzene 458 1.90
n-Pentane n-Hexane Benzene 6.165762 1.43
Cyclohexane n-Heptane Toluene 3.67 3.23
Brok-Bird equation
n-Hexane Cyclohexane Benzene 4.97 1.90
n-Pentane n-Hexane Benzene 6.165489 1.43
Cyclohexane n-Heptane Toluene 7.55 3.23
Group contribution theory
n-Pentane n-Hexane Benzene 2.05 1.43
Cyclohexane n-Heptane Toluene 9.70 3.23

4. Conclusions

Artificial neural network method was successfulhphed to predicting the surface tension of ternary
mixtures. Following the corresponding-state modeiliical properties along with the acentric factor
of the mixtures were selected as the ANN input patars by using the linear mixing rule for

calculating mixture properties. The structure & &NN model is composed of 2 hidden layers with 6
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and 5 neurons in the first and second hidden layespectively. The average absolute relative
deviations for the training, the predicted, andtibtal data points were obtained 1.69, 1.86, aiid 1.
respectively. The capability of the ANN model wasnpared with Flory theory, Brok-Bird equation,
and group contribution theory for some systems. ddraparative results proved that the deviations of
the generated model were lower than the three oredi models for all the studied systems. The
most significant characteristic of the ANN modelltbbe summarized into the following points:

1.The model calculates the surface tension of thetum@s more precisely than the existing
methods;
2.The input data are available and the detailed aladait the components would not be required.

This model is expected to be very helpful for eegiing calculations, as well as software packages.
It should be emphasized that the ANN method is wepful approach to predicting complicated
input-output systems.

Nomenclature

AARD% : Average absolute relative deviations
ANN . Artificial neural network
ANN-GC . Artificial neural network-group contribuatn
EOR : Enhance oil recovery
GC : Group contribution
K : Kelvin
M : Molecular weight
MMM : Mohsennia-Modarress-Mansoori
N : Number of experimental data
P : Pressure
QSPR : Quantitative structure property relatiopshi
S : Specific gravity
SPT : Scaled particle theory
T : Temperature
Y : Volume
VTPR : Volume-translated Peng—Robinson
VTSRK : Volume-translated Soave Redlich—-Kwong
Greek Symbols
® : Acentric factor
Subscripts
b : Normal boiling point
c : Critical
Super script
exp . Experimental
prd : Predicted
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