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Abstract 

In this work, artificial neural network (ANN) has been employed to propose a practical model for 
predicting the surface tension of multi-component mixtures. In order to develop a reliable model 
based on the ANN, a comprehensive experimental data set including 15 ternary liquid mixtures at 
different temperatures was employed. These systems consist of 777 data points generally containing 
hydrocarbon components. The ANN model has been developed as a function of temperature, critical 
properties, and acentric factor of the mixture according to conventional corresponding-state models. 
80% of the data points were employed for training ANN and the remaining data were utilized for 
testing the generated model. The average absolute relative deviations (AARD%) of the model for the 
training set, the testing set, and the total data points were obtained 1.69, 1.86, and 1.72 respectively. 
Comparing the results with Flory theory, Brok-Bird equation, and group contribution theory has 
proved the high prediction capability of the attained model.  
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1. Introduction 

Surface tension is one of the important characteristics of liquids which influences various surface 
phenomena such as creating bubbles, foams, droplets, emulsion, and heterogeneous liquid phases 
(Brocos et al., 2005; Gharagheizi et al., 2011c; Mohsen-Nia et al., 2010; Poling et al., 2000; Roosta et 
al., 2011; Tahery et al., 2005). Certainly, the determination of physical and chemical properties of 
liquids is unattainable without considering surface tension. In chemical and petroleum engineering 
operations such as separation, distillation, extraction, and adsorption, the surface tension of the 
mixtures (σm) is an essential parameter (Bainbridge and Sawistowski, 1964; El-Bourawi et al., 2006; 
Rosen and Kunjappu, 2012; Syeda et al., 2004; Zuiderweg and Harmens, 1958). Moreover, the 
surface tension of the reservoir fluid plays a key role in enhancing oil recovery (EOR) and it has 
different effects on capillary pressure, residual oil saturation, and relative permeability (Dake, 2001; 
Donaldson et al., 1985; Sheng, 2010; Tarek Ahmed, 2010). 

The surface tension of mixtures depends on surface composition and temperature. However, it is not a 
linear function of the surface tension of ingredients because the surface composition is different from 
bulk and cannot easily be defined. Consequently, simple and linear models for the prediction of the 
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surface tension in multi-component systems are inapplicable (Poling et al., 2000). 

In the past years, several methods, which are usually derived from thermodynamic definitions, have 
been presented to calculate the surface tension of the mixtures. Butler (1932) proposed an equation to 
predict surface tension which has widely been applied to developing other methods such as Redlich-
Kister (1948) correlation for binary systems. Sprow and Prausnitz (1967) proposed a model for non-
ideal mixtures similar to Butler’s model. Jufu et al. (1986) developed a correlation based on the local 
composition model using Wilson’s equation as an activity model. Suarez et al. (1989) used the 
modified UNIFAC group-contribution method—developed by Larsen et al. (1987)—to compute the 
activity coefficients in the surface and bulk phases. Zhibao et al. (1990) combined the UNIFAC model 
with Butler’s equation for calculating the surface tension of both binary and multicomponent systems. 
Furthermore, several approaches have been proposed for predicting the surface tension of 
multicomponent systems in recent years. Sonawane and Kumar (1999) correlated the surface tension 
of binary liquid mixtures based on Butler’s equation. Chunxi et al. (2000) presented a two-parameter 
surface tension equation for binary and multicomponent systems based on thermodynamic definitions 
and an expression for Gibbs free energy. Pineiro et al. (2001) proposed a model using Kretschmer and 
Wiebe (1954) results for estimating the composition of the surface layer in binary liquid mixtures. 
Santos et al. (2003) presented a new equation to correlate the excess surface tension of binary 
mixtures obtained from Butler’s equation for calculating surface tension in the binary and ternary 
liquid mixtures. Miqueu et al. (2004) used the gradient theory of fluid interfaces to compute the 
surface tension of binary and ternary hydrocarbon mixtures. Brocos et al. (2005) employed the 
extended Langmuir model to define the behavior of binary systems as a function of bulk 
concentration. Tahery et al. (2005) correlated the surface tensions of aqueous and non-aqueous binary 
solutions utilizing the excess number of molecular layers and free energy change in the surface region 
(Shereshefsky, 1967). Ramirez-Verduzcoet al. (2006) obtained a method based on the UNIFAC group 
contribution model for the prediction of the surface tension. In this method, the analogy between 
bubble point pressure and vapor composition was used for calculations. Lin et al. (2007) applied the 
gradient theory to estimating the surface tension of pure fluids and binary mixtures. In this technique, 
the Helmholtz free energy density and the bulk properties were calculated using volume-translated 
Peng–Robinson (VTPR) and Soave Redlich–Kwong (VTSRK) equations of state. Gardas and 
Coutinho (2008) used quantitative structure–property relationship (QSPR) for predicting the surface 
tensions of ionic liquids. Bitaab et al. (2008) proposed a model based on the perturbation theory of 
fluids to correlate the surface tension of pure and binary hydrocarbon mixtures. Mohsen-Nia et al. 
(2010) correlated the surface tension of mixtures by a new model obtained from coupling scaled 
particle theory (SPT) and the MMM equation of state. 

Recently, artificial neural network (ANN) has extensively been taken into consideration for the 
prediction of thermo-physical properties. Gharagheizi et al. (2011) utilized artificial neural 
network−group contribution (ANN-GC) method to calculate the surface tension of pure compounds. 
Roosta et al. (2012) applied ANN for modeling the surface tension of pure organic compounds. They 
used critical pressure, acentric factor, reduced temperature, reduced normal boiling temperature, and 
specific gravity at the normal boiling point as the input parameters to the ANN. In our previous work, 
(Parhizgar et al., 2012) we proposed a new model based on the ANN for the prediction of the surface 
tension of binary mixtures. 105 binary mixtures containing 2250 data points were applied to generate 
the new model using critical pressure, critical volume, reduced temperature, and acentric factor of 
pure component as the inputs. 
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Although there are varied approaches to the prediction of the surface tension, they have some 
limitations. Most of the mentioned methods have inherent complexity and require lots of input 
parameters. Additionally, the majority of them do not offer a precise estimation for new systems. On 
this account, it is inferred that an effective practical method with a high prediction capability would be 
required (Eslamimanesh et al., 2011; Mohammadi et al., 2010; Mohammadi and Richon, 2010). In 
this work, an ANN method has been applied to generate a new comprehensive model for the 
prediction of the surface tension of ternary mixtures. In fact, the current work is a complementary 
study for our previous investigations (Parhizgar et al., 2012). For the evaluation of the accuracy of the 
obtained model, the results have been compared with some well-known theories. 

2. Artificial neural networks 

In recent years, artificial neural network (ANN) has widely been employed for modeling complex 
nonlinear systems, especially for the prediction of thermodynamic properties (Boozarjomehry et al., 
2005; Dehghani et al., 2006; Eslamimanesh et al., 2011; Eslamloueyan and Khademi, 2009; 
Eslamloueyan and Khademi, 2010; Gharagheizi et al., 2010; Gharagheizi et al., 2011a; Gharagheizi et 
al., 2011b; Moghadassi et al., 2010; Mohammadi et al., 2010; Mohammadi and Richon, 2010). ANN 
is known as a powerful approach among black box modeling approaches. This method does not 
involve detailed theories and trains the functionality of the presented input-output data automatically 
(Eslamimanesh et al., 2011; Mohammadi et al., 2010; Mohammadi and Richon, 2010).  

There are different types of ANN methods such as feed forward, radial basis function, and auto 
associative network. Feed forward network (FF) has been frequently applied to engineering studies, 
especially in chemical engineering because of its simple structure and mathematical analysis. Back 
propagation (BP) is the most common type of FF network because it has a straight instruction 
procedure (Boozarjomehry et al., 2005; Dehghani et al., 2006; Eslamimanesh et al., 2011; 
Eslamloueyan and Khademi, 2010; Gharagheizi et al., 2010; Gharagheizi et al., 2011a).  

The network of ANN is composed of an input layer, some hidden layers (at least one), and one output 
layer. Layers contain one or more simple internal units named neuron. The number of neurons in the 
input and output layers are consistent with the number of input and output variables. It has 
emphasized that a network with appropriate hidden layers and neurons is capable to predict any 
functionality. Neurons are associated to each other by weight functions; each neuron receives signals 
from previous layers proportional to the weight functions and generates an output spreading to 
forward layers. In each layer, the neuron value (ai

j) is calculated by Equation 1 (Boozarjomehry et al., 
2005; Eslamloueyan and Khademi, 2009; Eslamloueyan and Khademi, 2010). 

1 1
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=
= × +∑  (1) 

where, i, j, w, and b are layer number, neuron number in layer i, weight function and bias respectively. 
The biases are added to the neurons for adjusting the outputs; it makes the simulation be performed 
faster and more accurate. In Equation 1, f is the transfer function including linear and nonlinear 
algebraic expressions changing the input of each layer to the output. Classically, log sigmoid, tangent 
sigmoid, and linear transfer functions are implemented in the networks (Boozarjomehry et al., 2005; 
Dehghani et al., 2006; Gharagheizi et al., 2010; Gharagheizi et al., 2011a; Gharagheizi et al., 2011b; 
Gharagheizi et al., 2011c; Parhizgar et al., 2012; Roosta et al., 2011). After defining the structure of 
the network, i.e. the number of hidden layers, neurons, and transfer functions, unknown parameters 
(the weight functions and biases) would be adjusted to reach the outputs of the experimental values. 
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Network structure should be in the lowest possible volume; Understanding the best structure for 
acceptable results is a challenging step and is usually performed through trial and error procedure. 
There are two major steps in the process of ANN construction, namely training and testing. In the 
training step, the input data and the corresponding outputs are presented to the network and the weight 
functions and biases are accordingly adjusted to attain the minimum imprecision. In the BP network, 
deviations are returned back to the network for readjusting the weight functions and biases. To 
develop an acceptable network, a suitable dispersion of the training data is required (Boozarjomehry 
et al., 2005; Eslamloueyan and Khademi, 2009; Eslamloueyan and Khademi, 2010). After the training 
step, the network will be able to predict new data points (test). There are different algorithms to adjust 
weights and biases in training step; for instance, Levenberg-Marquardt is a frequently used algorithm. 
Detailed definitions about ANN can be found in the literature (Braspenning et al., 1995; Haykin, 
1999; Kwok et al., 2010; Murray, 1994; Priddy and Keller, 2005).  

3. Modeling and results 

3.1. Developing an ANN model 

The first step to develop an ANN model for the current study is the investigation of the parameters 
affecting the surface tension of multicomponent systems; these parameters organize the inputs of the 
network. Through an extensive literature review, it was inferred that the corresponding-state models 
have more competency to be followed for defining the input parameters. The corresponding-state 
models constitute a significant sub-group of predictive thermodynamic models and have more 
available and easy-to-use inputs. In this regard, critical pressure and volume, reduced temperature, 
and an acentric factor of the mixture were selected as the input parameters. Considering the linear 
mixing rules used in Brok-Bird model (Brock and Bird, 1955; Pandey et al., 2004), the input 
parameters including the mixture reduced temperature (TR, m), critical pressure (Pc,m), critical volume 
(Vc,m), and the acentric factor (ωm) were defined as follows (Equations 2-6): 
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where, Tc,i, Pc,i, Vc,i, ωi, and xi are critical temperature, critical pressure, critical volume, the acentric 
factor, and the mole fraction of component i in the mixture respectively. Critical properties and the 
acentric factor of the components were quoted from Perry's Chemical Engineers' Handbook (Green 
and Perry, 2007). 

15 ternary liquid systems containing 777 experimental data points were utilized to create the ANN 
model. Table 1 presents the selected mixtures generally composed of hydrocarbons. It should be noted 
that the data related to the surface tension of ternary mixtures are so restricted. We have tried to 
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collect relatively all of the accessible data in the literature, considering that ionic liquids or 
refrigerants are studied in this work. As it is shown in Table 1, the selected data lies in a diverse 
temperature range (287.81 to 328.15 K). 

Table 1 
Selected ternary mixtures; the number of data points and temperature range. 

Compound 
1 

Compound 
2 

Compound 
3 

Number of 
data points 

Temperature 
range (K) Reference 

Water Ethyl Butyrate Methanol 43 303.15 
Kijevcanin et al., 

2003 
Diethyl 

Carbonate 
p-Xylene Decane 73 298.15 

Mosteiro et al., 
2009 

Sulfuric Acid Dimethylamine Water 131 297.35 
Hyvärinen et al., 

2004 

Heptane Toluene 
N,N-Dimethyl 

formamide 
73 287.81-317.86 Kahl et al., 2004 

Water Acetone Toluene 158 288.15-328.15 
Enders et al., 

2007 

Water n-Butyl Acetate 1-Propanol 68 303.15 
Johnson et al., 

2008 

n-Hexane Cyclohexane Benzene 10 298.15 
Pandey et al., 

2001 

Cyclohexane n-Heptane Toluene 10 298.15 
Pandey et al., 

2008 

n-Pentane n-Hexane Benzene 10 298.15 
Pandey et al., 

2008 
2,2,4-Trimethyl 

Pentane 
Cyclohexane Decane 44 298.15 

Pandey et al., 
2008 

Hexane Decane Hexadecane 24 303.16 
Pandey and Pant, 

1982 

Nitromethane Benzene 1-Propanol 31 296.15-299.95 
Michaels et al., 

1950 

2-Propanol Toluene Furfural 30 293.65-300.85 
Michaels et al., 

1950 

Toluene Benzyl Alcohol Ethyl Acetate 31 295.45-302.85 
Michaels et al., 

1950 

Water 
Ethyl 

Propionate 
Methanol 41 303.15 

Kijevcanin et al., 
2004 

Due to the frequent usage of back propagation feed forward networks in the field of 
thermodynamics, this type of ANN was utilized. Furthermore, the average absolute relative deviation 
(AARD%) was chosen to evaluate the errors. The AARD% equation is defined by the following 
equation:  

,exp ,
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| |1
% 100

n
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n

σ σ
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−
= × ×∑  (7) 

where, σ i,exp, σ i,prd , and n are the experimental data, predicted data, and the number of data set used in 
the training step respectively. In the training step, Levenberg-Marquardt algorithm was utilized for 
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analyzing the errors and adjusting the network parameters. To design ANN, 80% of the data were 
randomly selected for network training and the rest were applied to testing. 

For keeping away from over-fitting, the lowest number of adjustable parameters should be considered. 
To meet such a requirement, the network structure was developed based on a trial and error 
investigation; at the first step, the minimum number of hidden layers and neurons were selected and 
the procedure was then pursued by the examination of different networks with various transfer 
functions, the number of hidden layers, and neurons to attain satisfactory results. Eventually, the 
network with 2 hidden layers composed of 6 and 5 neurons was selected as the most excellent 
network. The topology architecture of the designed ANN is depicted in Figure 1. Log sigmoid, 
tangent sigmoid and linear transfer functions have been selected for the input, hidden, and output 
layers respectively. 

 
Figure 1 
Neural network architecture. 

As it is indicated in Figure 1, i is the input layer, j and k are the two hidden layers, and l is the output 
layer. According to the above definitions, the equations generating the outputs in the trained ANN are 
as follows: 
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For instance,
4 1j kw −  represents the weight value between neuron 4 in the first hidden layer (J4) and 

neuron 1 in the second hidden layer (k1). Log-sigmoid and tangent sigmoid functions are defined by: 

1
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1 x
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 (11) 
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The values of weight functions in the input layer, hidden layers, and the output layer have been 
presented in Tables 2 to 4; also in addition, Table 5 shows the biases associated with the transfer 
functions of each layer. 

Table 2 
First layer weight functions (Wjx-ky). 

x p=1 p=2 p=3 p=4 

1 202.0213 43.2631 181.1284 7.0159 

2 45.5452 60.262 20.0581 1.9991 

3 0.106 -0.4796 -2.1804 2.5569 

4 4.0947 -1.5378 -3.9558 2.8492 

5 13.8789 -0.2956 3.4186 -6.7226 

6 137.6217 -4.363 3.5732 -9.2149 

Table 3 
Second layer weight functions (Wjx-ky). 

y x  =1 x  =2 x  =3 x  =4 x  =5 x=6 

1 24.0978 0.922 -91.3867 25.9599 -6.4133 -4.2283 

2 -0.4556 -3.3241 -1.6047 -1.7602 2.0099 -6.4085 

3 22.1346 -20.7459 -124.175 132.3635 208.7892 -24.8667 

4 -1.8108 -5.6826 -58.231 15.7797 2.5286 -9.0837 

5 3.4065 0.0684 82.3987 -25.8016 10.0343 1.177 

Table 4 
Third layer weight functions (Wky-ln). 

N y=1 y=2 y=3 y=4 y=5 

1 -17.7458 -13.6074 -8.1823 -5.6212 -26.5498 

Table 5 
The biases. 

b l i bki b j i I 
15.9753 34.2327 -101.857 1 

 -3.4167 -29.3131 2 

 -9.0583 1.4751 3 

 48.2031 0.817 4 

 -56.4983 -2.4349 5 

  -24.4038 6 
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3.2 Evaluation of the

Figures 2 to 4 demonstrate the regression of the experimental value and 
of surface tension for 

Figure 2 
Surface tension calculated by ANN versus 

Figure 3 
Surface tension predicted by ANN versus 
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3.2 Evaluation of the model 

4 demonstrate the regression of the experimental value and 
of surface tension for the training, testing, and total data.

calculated by ANN versus the experimental data

Surface tension predicted by ANN versus the experimental data
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4 demonstrate the regression of the experimental value and the predicted/calculated value 
and total data. 

 

experimental data for the, train data. 

 

experimental data for the test data. 

Vol. 3 (2014), No. 3 

predicted/calculated value 
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Figure 4 
Surface tension predicted/calculated by ANN versus 
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Table 6 
The obtained AARD% values for the prediction of the surface tension of ternary liquid mixtures.  

Compound 1 Compound 2 Compound 3 AARD% 

Water Ethyl Butyrate Methanol 0.93 

Diethyl Carbonate p-Xylene Decane 1.32 

Sulfuric Acid Dimethylamine Water 1.31 

Heptane Toluene N,N-Dimethylformamide 2.45 

Water Acetone Toluene 1.37 

Water n-Butyl Acetate 1-Propanol 2.33 

n-Hexane Cyclohexane Benzene 1.90 

Cyclohexane n-Heptane Toluene 3.23 

n-Pentane n-Hexane Benzene 1.43 

2,2,4-Trimethyl Pentane Cyclohexane Decane 1.44 

Hexane Decane Hexadecane 1.89 

Nitromethane Benzene 1-Propanol 2.31 

2-Propanol Toluene Furfural 2.68 

Toluene Benzyl Alcohol Ethyl Acetate 3.52 

Water Ethyl Propionate Methanol 1.04 

  
Total 1.72 

Table 7 
Comparison of Flory theory, Brok-Bird equation, and group contribution theory with the obtained ANN model. 

Ternary mixture 
AARD % 

Flory theory ANN model 

n-Hexane Cyclohexane Benzene 4.58 
6.165762 

3.67 

1.90 
1.43 
3.23 

n-Pentane n-Hexane Benzene 

Cyclohexane n-Heptane Toluene 

   Brok-Bird equation   

n-Hexane 
n-Pentane 

Cyclohexane 
n-Hexane 

Benzene 
Benzene 

4.97 
6.165489 

7.55 

1.90 
1.43 
3.23 Cyclohexane n-Heptane Toluene 

   Group contribution theory   

n-Pentane 
Cyclohexane 

n-Hexane 
n-Heptane 

Benzene 
Toluene 

2.05 
9.70 

1.43 
3.23 

4. Conclusions 

Artificial neural network method was successfully applied to predicting the surface tension of ternary 
mixtures. Following the corresponding-state models, critical properties along with the acentric factor 
of the mixtures were selected as the ANN input parameters by using the linear mixing rule for 
calculating mixture properties. The structure of the ANN model is composed of 2 hidden layers with 6 
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and 5 neurons in the first and second hidden layers respectively. The average absolute relative 
deviations for the training, the predicted, and the total data points were obtained 1.69, 1.86, and 1.72 
respectively. The capability of the ANN model was compared with Flory theory, Brok-Bird equation, 
and group contribution theory for some systems. The comparative results proved that the deviations of 
the generated model were lower than the three mentioned models for all the studied systems. The 
most significant characteristic of the ANN model could be summarized into the following points:  

1. The model calculates the surface tension of the mixtures more precisely than the existing 
methods;  

2. The input data are available and the detailed data about the components would not be required.  

This model is expected to be very helpful for engineering calculations, as well as software packages. 
It should be emphasized that the ANN method is a powerful approach to predicting complicated 
input-output systems. 

Nomenclature 

AARD%  : Average absolute relative deviations  
ANN  : Artificial neural network 
ANN-GC : Artificial neural network-group contribution 
EOR  : Enhance oil recovery 
GC  : Group contribution 
K  : Kelvin 
M  : Molecular weight 
MMM  : Mohsennia-Modarress-Mansoori 
N  : Number of experimental data 
P  : Pressure 
QSPR  : Quantitative structure property relationship 
S  : Specific gravity 
SPT  : Scaled particle theory 
T  : Temperature 
V  : Volume 
VTPR  : Volume-translated Peng–Robinson 
VTSRK : Volume-translated Soave Redlich–Kwong 
Greek Symbols 
ω  : Acentric factor 
Subscripts 
b  : Normal boiling point 
c  : Critical 
Superscript 
exp  : Experimental 
prd  : Predicted 
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