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Abstract

The spatial distribution of petrophysical propestigithin the reservoirs is one of the most impdrtan
factors in reservoir characterization. Flow unite ¢he continuous body over a specific reservoir
volume within which the geological and petrophykipeoperties are the same. Accordingly, an
accurate prediction of flow units is a major taskachieve a reliable petrophysical description of a
reservoir. The aim of this paper was core flowt determination by using a new intelligent method.
Flow units were determined and clustered at spedidipths of reservoir by using a combination of
artificial neural network (ANN) and a metaheuristigtimization algorithm method. At first, artifidia
neural network (ANN) was used to determine flowtsifrom well log data. Then, imperialist
competitive algorithm (ICA) was employed to obtalive optimal contribution of ANN for a better
flow unit prediction and clustering. Available ring core and well log data from a well in one af th
Iranian oil fields were used for this determinatidrhe data preprocessing was applied for data
normalization and data filtering before these apphes. The results showed that imperialist
competitive algorithm (ICA), as a useful optimizatimethod for reservoir characterization, had a
better performance in flow zone index (FZI) clusigrcompared with the conventional K-means
clustering method. The results also showed that 8pfimized the artificial neural network (ANN)
and improved the disadvantages of gradient-basekl pp@pagation algorithm for a better flow unit
determination.

Keywords: Hydraulic Flow Units, Imperialist Competitive Algdim, Artificial Neural Network,
Core data, Well logging Data

1. Introduction

Flow units are the continuous body over a specédservoir volume within which the geological and
petrophysical properties are the same (EBANKS, L9&87complete reservoir description is mostly
provided through the identification of flow uni&n accurate prediction of flow units is essental &
reliable reservoir petrophysical modeling.

Artificial neural network is a powerful computingethod and is based on a nonlinear relationship
between inputs and output(s). Neural network canaekthe hidden patterns in well log and core

data. Neural network has many applications in i gas industry such as reservoir characterization,
the identification of well test interpretation méslerock and fluid properties forecasting, comleti
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analysis, reservoir fractures detection, and folonadlamage prediction (Mohaghegh, 2000).

In this paper, the multilayer perceptron (MLP) asedl-known feed-forward neural network is used
for determining the flow units for a well in ond dield located in the southwest of Iran. The data
preprocessing is applied for data normalization rmdoving outliers.

Many evolutionary algorithms such as genetic athami (GA), simulated annealing, particle swarm
optimization (PSO) are used for neural networkrojation and data clustering (Atashpaz-gargari et
al., 2007).

Neural network optimization can be considered fdfetent aspects such as weight training,
architecture adaptation (the number of hidden By#ne number of hidden neurons, and node
activation functions) and learning rules (Mahmoetlial., 2009). Moreover, data clustering is an
unsupervised learning approach for grouping tha o clusters with the same features.

In this study, imperialist competitive algorithn€C@) as a new population-based evolutionary method
is used for this optimization and clustering.

ICA was presented by Atashpaz-Gargari and Luc&9)@v and is based on socio-political evolution
process (Abdechiri et al., 2010). This algorithms hmany applications in solving engineering
optimization problems such as data clustering (Alikret al., 2011; Ebrahimzadeh et al., 2012), Nash
equilibrium point achievement (Rajabioun et al.02)) artificial neural network (ANN) training
(Khorani et al., 2011; Zhang, 2012), compositedtmes (Abdi et al., 2011), production management
problems (Nazari-Shirkouhi et al., 2010), and oiflistry optimization problems (Ahmadi et al.,
2012).

Imperialist competitive algorithm (ICA) is employé&ar multilayer perceptron (MLP) neural network
optimization in flow unit determination at specitiepth intervals and for FZI clustering for assigni
the best flow unit number to these intervals. Tdpproach is applied to petrophysical modeling and
predicting the petrophysical parameters in un-conadls. The optimal weights and biases for
multilayer perceptron (MLP) neural network were abéed and based on FZI clustering; the flow
units were distributed across the well.

The efficiency of ICA for MLP neural network optimgition and FZI clustering is demonstrated
according to the results compared with conventiomsthods such as gradient descent back
propagation algorithm for neural network optimipatand K-means approach for data clustering.

2. Hydraulic flow unit definition

Flow units are laterally and vertically continucaisross reservoir zones, having the same hydraulic
and pore throat petrophysical properties. Petraphlyparameters such capillary pressure, relative
permeability curves, and all porous media propgntadated to porosity/permeability correlation are

the same in any hydraulic units (Shahvar et alQ920By using this concept, the petrophysical

parameters can be investigated at homogeneousatgeand thereby making a better estimation for

these properties in un-cored intervals.

Among petrophysical techniques such as WinldRd, Winland-Pittman for carbonates and
sandstones, Rock-Fabric, Bryant-Finney, stratigaphodified Lorenz plot (SMLP), and Carmen-
Kozeny and stratigraphic flow profile (SFP) for HRlétermination (Gunter et al., 2012) the flow
zone index (FZI) approach was considered for tlgeminination. FZI method was presented by
Amaefule (1993) and is based on Kozeny-Carmen amquédmaefule et al., 1993). In this method,
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the porous medium is supposed to consist of a buridtapillary tubes.

Different geological parameters and pore scaleopéisical properties are used in Kozeny-Carmen
equation. The core permeability and porosity ageiired for this determination.

At first, the reservoir quality indexRQI) and normalized porositypf)is calculated as follows
(Amaefule et al., 1993):

RQI = 0.031%/5 1)

where K is permeability in mD.

P
T 2
%21, @
Then the FZI can be determined by this formula:
FZI =R—QI (3)
9,

By taking a logarithm of each side of Equation 3:

log(RQI) =log(@, )+ log(FZ1) 4)

By plotting theRQI versusg, on a logarithmic form, samples by the same FZktscaround a
straight line with a unit slope. Samples of eacéttec have the same pore throat properties which
belong to a specific flow unit. Therefore, a sepafallel lines can be created equal to the nuraber
flow units determined for depth intervals and thieicepts of this lines gt=1 show the FZI values
(Shenawi et al., 2007; Abdi et al., 2007).

3. Artificial neural network

Artificial neural network is a popular computing tined for solving problems with a complex hidden
structure. This method is applicable to some temksh as function approximation, time series
prediction, pattern recognition, data classificatimoise filtering, and control systems. Learning
algorithms are used for adjusting the neuron wsigimd structure parameters and have three main
classes, namely supervised learning, reinforcent@arning, and unsupervised learning (Kumar,
2012). Some types of neural network are feed-fadwKiohonen self-organizing, and recurrent and
radial basis function (RBF) neural networks. In therent study, the most known type of neural
network called multilayer perceptron (MLP) was usBlLP is a feed-forward neural network for
solving nonlinear problems by using back-propagatitgorithm as a gradient-based and supervised
training tool. MLP as a multilayer hierarchicalugtture creates a nonlinear correlation betweentsnpu
and output(s). MLP consists of the input, hiddemj autput layers. Each layer consists of nodes as
processing factors with an activation function ahed nodes connect to each other by using right
weights (Gentry, 2003).

4. Imperialist competitive algorithm

Imperialist competitive algorithm (ICA) is a newautionary computation method based on socio-
political competition. This algorithm uses the askition policy which the imperialistic countries
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have reackd after the 19th century. In this study, the gifcthe optimization is to find the optimi
solution for 1N, variablesof neural network weights and biases. Therefore,haee n Nya-
dimensional optimization problem. /the first step, a country wi- a 1N, array is divided int
imperialists and colonies based on their cost v&altlibe country and cost function given as below
(Atashpazgargari and Lucas, 20C

country=[ B, B, B R, ] (5)

cost= f(county= { p p p.... P ) (6)

Then, the countries are divided i Nin, of imperialists anctN, of colonies based on their cos
Therefore, the normalized cost of an imperialigiudti be determined ereads(Atashpa-gargari et
al., 2007):

C, = ¢, ~max{ g} )
c,andC, are the cost and normalized cosnth imperialist respectively. By considering thistdhe
normalized power of an imperialist can be defing(Atashpaz-gargari et al., 2007)

Py = (8)

The initial number of colonies that are possessednbimperialisi(NG,) is proportional to the powe
and can béoundas given below (Atashpagargari et a, 2007):

N.C,, =round p.N,} (8)

For thesecond step, the assimilation policy is consideasdamovementof colonies toward th
imperialists. The distance between the initial posiof the colony and an imperialist is defined d,
and the new position cthe colony withrespect to its initial condition is defined by andam
parameter with aniform distribution(y) (Figure 1. By considering the assimilation dficient () as
a number greater than o y can be formulated ag&{ashpa-gargari et al., 2007):

x~U(0,8xd) 9)

Imperialist

New Position

of the Colony /
/
Colony \T/
Figurel

Assimilation proces(Atashpaz-gargari et al., 2007).

This movement may be done in thedirections by taking different positions colonies toward th
imperialist This process is defined a deviation ang (¢), which isa random number defined
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follows (Figure 3 (Atashpaz-gargari et al., 2007) :
6~U(-y.y) (10)

vy is theassimilation angle coefficient thadjuststhis deviatiorwith respect to theriginal.
Imperialist

~. New Position
of Colony

Colony

Figure?2
Assimilation process with a deviated moverr(Atashpa-gargari et al., 2007).

For the third sterthe algorithm uss a process named revolutiThe revolution is a sudden char

in thepositions of colonies and imperiali, which prevents country from sticking a local optimum
and increases the algorithm exploration. This ckaimcthe position is because @ change in the
sociopolitical characteristics of countries and it igided by a revolution rate ithealgorithm.

For the last step, an imperialistic competitionemblace between empires. Each empire consists
individual imperialist with its colonies. At firstthe total cost(TC, of each empire should |
determined agivenbelow (Atashpaz-gargari et 22007):

T.C., = Costimperialist,) + { meafy Cogt colonies afmpire)} (1)
{ (zetg is a positive number less than o

Therefore the normalized total co(NTGC,) andthe possession probabilityH, )of each empire ar

calculated byAtashpa-gargari et al., 2007):

N.TC,=TC, - max{T.C,} (12)
N.T.C,
pn = Nlmp (13)
> N.T.C,
i=1

Then a vectorR) of these powers is also defin@stashpa-gargariand Lucas, 200:

P=[p,. Py, Poyrees Py | (14)

imp

For a random distribution of powers between empizeset of random numts (R) is subtracted fror
vector P). Thus, the desired randly distributed powers of empire¢(D) are generate(Atashpaz-
gargari and Lucas, 20C

R=[L, N leefy ] (15)

imp

P SN VY (0 D=P-R=[D, D, D,.., Dy, 1=, 5 Py = B Py = G Py, =Ty 1 (16)
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By considering these randomly distributed powers e imperialist competition between them, the
weaker colonies take apart from the weaker empic jain to an empire by a lower total cost.
Therefore, the weakest empire loses all its cobmied its imperialist turns into a colony moving
toward the stronger empire. At the end, one empilleremain. The imperialist and colonies of this
empire have the same power and there is no differbatween them (Figure 3).

ICA as a new evolutionary-based algorithm usedaitsors such as assimilation coefficiefij {or
exploration and exploitation in the result space®@riation angled) for more diversity in the results.
ICA is a proper algorithm for good global convergemperformance and it has a good performance in
convergence rate and global optimization.

According to this process for imperialist compgttialgorithm, the optimal results will be obtained
for network training. By defining a proper cost ftion and by considering the same steps for the
algorithm, ICA can be used for data clustering (kmb et al., 2011).

{ Besin )

Initzalize the empires

r!

Mowve the colomies 1o therr
relevant imperialist

Is there a colony in an empire which las
higher cost than that of imperialist 7 MNo

T
Yes

Exchange the positions of

that imperialist and colony

v

l Compute the total cost of all empires

-

Pick the weakest colony from the weakest ampire
and give it to the empire that has the most
likelihood to possess it

< Is there an empires \ Mo

with no colonies ?

Yeas

h 4

’ Ehliminate this empire I

5

M < Stop condition satisfied 7 >

T
Yes

v

{ Chutput :I
Figure3

Flowchart of imperialist competitive algorithm (Ig£Duan et al., 2010).
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5. Case study: an ail field of Iran

The oil field of this study is located in the sow#st of Iran. It has a trend along the northwest-
southwest direction. The structure of this oildied asymmetrical anticlinal fold. According to WQC
GOC levels, and petrophysical properties, thifieitl was divided to four sectors. Well-13 has been
chosen for this study. This well is located in thaldle sector named sector 3-west. This oilfield
consists of Bangestan and Asmari reservoirs. Adl depth intervals of Asmari reservoir can be
observed in this well and the top of this reseriat a depth of 2203 meter along the well. Ii$ thi
reservoir, most of the rocks characterized are diovee and dolomite, and dolomitic limestone is
abundant. The porosity of dolomite beds is betwieto 20%. Fracturing within the Asmari units has
limited vertical communication with other units atine horizontal permeability is better than or dqua
to the vertical permeability.

Wireline logs and the conventional core data wegeglable for flow unit determination. Wireline logs
data include log porosity, sonic travel time [D@gep resistivity [LLD], neutron porosity [NPHI],
bulk density [RHOB], standard gamma ray [SGR], sader saturation [Sw].

6. Results and discussion

6.1. Data preprocessing and normalization

Because of reservoir heterogeneity and the existaxfcerrors in data, data preprocessing is an
essential procedure before neural network trainingthis study, data preprocessing consists of
normalization, scaling, removing outliers, and best dependent inputs selection (Kotsiantis et al.,
2006). Many statistical transformations are applteddata normalization such as square root,
logarithmic, inverse, and arcsine and Box-Cox ti@msations.

In the present work, Box-Cox method was used faa d@rmalization. This method has a range of
power transformations and high efficiency perforoein the normalization of the positively-and
negatively-skewed variables (Osborne, 2010).

This transformation is defined as follows:
A
y” -1 :
yy=1" “A#0 y>0 (17)
Ln(y) (4=0); y>0
In this formulayy, is the amount of datnd lambdaX( is a real number.

The outliers were plotted by Boxplot tool in Matl&oftware (Figure 4) and 3.2171% of data were
filtered by removing these outliers from the datgB&ure 5).

Scaling is standardizing the data into the fingage of [-1,1]. In other words, by tuning the netko
parameters for a given range, the importance ablas can be equalized and therefore continuum
weights are created in a predictable range forti@teetwork training (Tang et al., 2011).

The effect of this transformation and data filtgrion the correlation between the inputs and output
can be investigated by a comparison between thitsds Table 1 and Table 2.

By considering the correlation coefficients in T@Bl the best well logs chosen as the inputs ap de
resistivity (LLD), sonic travel time (DT), bulk deity (RHOB), water saturation (Sw), and neutron
porosity (NPHI).
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Figure4
Boxplot of all the well log data, FZI, and logarith(FZI).
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Figure5
Boxplot of well log data and FZI after Box-Cox tediormation and data filtering.

Tablel
Correlation coefficient for all the data (373 roefddata).
log phi DT LLD NPHI RHOB SGR Sw
FzI -0.03170  -0.13984  0.12306 0.03544 0.09965  -0.02089.05119

log(FZ1) -0.02588  -0.31383 0.42428 0.22152 0.33117 0.025910.21418
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Table2
Correlation coefficient after Box-Cox transformatiand data filtering for normalization
(361 rows of data and 3.2171% of data were filtered

log phi DT LLD NPHI RHOB SGR Sw
FZI -0.06059 -0.35422 0.64304 0.20812 0.34973 0.035930.25867

6.2. FZI clustering using ICA

Clustering is an unsupervised learning approactpéstitioning a set of data. The methods of this
approach can be considered as hierarchical andigraat methods. K-means is a simple and very
popular partitional clustering method that is basad_loyd algorithm (Lloyd, 1982). However, this
algorithm is very dependent on the initial conditiof cluster centers and may be stuck at a local
optimum. For this reason, evolutionary algorithnasm de applied to this approach. In this work,
imperialist competitive algorithm (ICA) as a globaptimization method was used for well data
clustering. This algorithm has good performancé&aming for better results and in the convergency
of clustering approach compared to most evolutpmaethods such as genetic algorithm (GA),
simulated annealing (SA), and Tabu search (TS)rihgos (Niknam et al., 2011). The sum of
minimum distance of points to parallel lines withrit slope in a logarithmic scale was consider®d a
the cost function for this ICA clustering method.

By using the cumulative distribution function (CDRijstogram for log (FZI) and the number of
broken lines assigned to this curve, eight flowtsiniere considered as an input to the algorithne. Th
ICA method can fit the best line into samples bingisan assimilation policy and a competition
process, and then the best FZI can be assigneacto @uster (Figure 7). By using the competition
feature of ICA, samples located between flow unid can be distinguished and clustered in a proper
group. The distribution of these flow units is dtrated in Figure 8. The FZI intervals and numlder o
data points related to each flow unit are listedable 3.

Table3
HFU groups determined by ICA.
HFU No. log(FZ1) intervals Number of data log(FZl)
HFU 1 [-0.6805 , -0.3346] 86 -0.384007585
HFU 2 [-0.3305, -0.2099] 90 -0.279294165
HFU 3 [-0.2061 , -0.0737] 42 0.137889131
HFU 4 [-0.0647, 0.0746] 50 0.003756828
HFU 5 [0.0914 , 0.2427] 40 0.157518957
HFU 6 [0.2632 , 0.4223] 23 0.343655364
HFU 7 [0.4401 , 0.8420] 20 0.523070737
HFU 8 [0.9463 , 1.9965] 10 1.228028598

6.2. Multilayer perceptron (MLP) neural network optimization by using ICA (ICA-
ANN method)

In the process of ANN optimization by using ICAethoal of this algorithm is reducing the network
training error by assigning the optimal weight&zch node connection.
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After the data preprocessing stage, the best neteveall logs data (LLD, DT, RHOB, Sw, and NPHI)
as the inputs and flow zone index (FZI) as the wiuyere adjusted.

One hidden layer with four neurons was consideoedhe network structure. Log-sigmoid and linear
transfer functions were adjusted for the hiddenauntgut layers (Figure 6).

_______________________ L

a = logsigin) a = purelinin)

Log-Sigmoid Transfer Functic Lineal Transfer Functio

Figure6
Transfer functions for the hidden and output layers

At first, the network was trained based afeed-forward neural network with a back propamati
gradient descent method using Levenberg-Marquaidtir{lm) algorithm (Figure 9). The
disadvantages of this method are sticking at al loptimum, low speed in convergency, and
overfitting. All this disadvantages depend on thigial network weights and biases. For this reason,
the neural network was optimized by imperialist petitive algorithm as a global searching method
(Ahmadi et al., 2012). This optimization problens g, unknown parameters equal to the number of
weights and biases. Therefore, we optimize the ordtvas anN,,~dimension optimization problem.
All weights and biases are considered as counfdeghe ICA. A matrix for the population of
countries and a set of training data are used esniputs to the cost function and the network is
evaluated by minimizing the sum of squared err88K) between the real targetg &nd the network
outputs yy):

1y, > Sy
SSE=— 20~ ¥) —(I\H)[;; sﬁ} (18)

i=1

n

In this formula,N is the number of samples arS;r, % , and §ny denote the variance of the real

targets, the variance of the network outputs, &edcbvariance between them respectively. Adjusted
parameters for this algorithm are listed in TableU$ing this optimization process, the optimal
weights and biases are fitted for a better coiian the results (Figure 10).

By considering the correlation coefficief®)( mean square error (MSE) parameters (Table %)),aan
comparison with another industrial project (Fatabi) 2007) based on ANN method, the efficiency of
ICA for MLP neural network optimization and HFU danination is concluded.

Table4
Adjusted parameters for ICA.
Number of Number of Number of Revolution Assimilation Assimilation Damping Uniting
imperialists colonies  decades rate coefficient angle coefficient ratio  threshold

7 173 60 0.4 2 0.6 0.03 0.99 0.03
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Table5
Comparison between the results of ANN and ICA ofzted ANN methods.

Correlation
coefficient(R)

Corrédation

M SE for training coefficient(R) for

MSE for testing

data training data data for testing data
ANN 0.0471 0.77216 0.088 0.6195
I CA optimized ANN 0.0605 0.7204 0.061 0.70063
15
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Figure7

FZI clustering by using ICA.
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core core depth core core core core

depth (m) HFU No. (m) HFU No. depth (m) HFU No. depth (m) HFU No. depth (m) HFU No. depth (m) HFU No.
-2442.67 4 -2464.003 -2485.34 -2505.15 4 -2535.33 -2538.98
-2442.97 -2464.308 5 -2485.64 -2505.46 6 -2535.63 -2539.29
-2443.28 5 -2465.832 4 -2485.95 -2505.76 -2535.94 -2539.59
-2443.58 4 -2466.4416 4 -2486.25 -2506.07 6 -2536.24 -2539.9
-2443.89 -2466.7464 5 -2486.86 6 -2506.37 6 -2536.55 -2540.2
-2444.19 5 -2467.0512 6 -2487.17 6 -2506.68 4 -2536.85 -2540.51
-2444.5 5 -2467.356 -2487.47 5 -2506.98 4 -2537.16 -2540.81
-2444.8 4 -2467.6608 -2487.78 6 -2507.28 -2537.46 -2541.12
-2445.11 6 -2468.2704 5 -2488.08 6 -2507.59 4 -2537.76 -2541.42
-2445.41 5 -2468.5752 6 -2488.39 6 -2507.89 -2538.07 -2541.73
-2445.72 -2468.88 -2488.69 5 -2508.2 8 -2538.37 -2542.03
-2446.02 -2469.1848 -2489 4 -2508.5 -2538.68 -2542.34
-2446.32 4 -2469.4896 -2489.3 6 -2508.81 -2538.98 -2542.64
-2446.63 -2469.7944 -2489.61 -2509.11 -2539.29 -2542.95
-2446.93 -2470.0992 -2489.91 4 -2509.42 -2539.59 -2543.25
-2447.24 -2470.404 -2490.22 8 -2516.12 -2539.9 -2543.56
-2447.54 5 -2470.7088 4 -2490.52 -2516.43 -2540.2 -2543.86
-2447.85 4 -2471.0136 4 -2491.44 4 -2516.73 -2540.51 -2544.17
-2448.15 4 -2471.3184 -2491.74 5 -2517.04 -2540.81 -2544.47
-2448.46 4 -2471.6232 -2492.04 4 -2517.34 -2541.12 -2544.78
-2448.76 4 -2471.928 6 -2492.35 8 -2517.65 -2541.42 -2545.38
-2449.07 5 -2472.2328 6 -2492.65 -2517.95 -2541.73 -2545.69
-2449.37 6 -2472.5376 5 -2492.96 -2518.26 -2542.03 -2545.99
-2449.68 5 -2472.8424 6 -2493.26 -2518.56 -2542.34 -2546.3
-2449.98 4 -2473.1472 5 -2493.57 5 -2518.87 -2542.64 -2546.6
-2450.29 -2473.452 5 -2493.87 8 -2519.17 -2542.95 -2546.9
-2450.59 8 -2473.7568 -2494.18 5 -2519.48 -2543.25 -2547.21
-2450.9 -2474.0616 5 -2494.48 -2519.78 -2543.56 -2562.45
-2451.2 5 -2474.3664 4 -2494.79 -2520.09 -2543.86 -2562.68
-2452.42 -2474.6712 -2495.09 -2520.39 -2544.17 -2563.06
-2452.73 -2474.976 5 -2495.4 4 -2520.7 -2544.47 -2563.37
-2455.16 -2475.2808 5 -2495.7 4 -2521 -2544.78 -2563.67
-2455.47 -2475.5856 8 -2496.01 -2521.31 -2545.38 -2563.98
-2455.77 -2475.8904 -2496.31 -2521.61 -2545.69 -2564.28
-2456.08 -2476.1952 -2496.62 -2521.92 -2545.99 -2564.59
-2456.38 -2476.5 5 -2496.92 -2522.22 5 -2546.3 -2564.89
-2456.69 -2476.8048 5 -2497.23 -2522.52 -2546.6 -2565.2 5
-2456.99 -2477.1096 6 -2497.53 -2522.83 -2546.9 -2565.5
-2457.3 -2477.4144 4 -2497.84 -2523.44 -2547.21 -2565.81
-2457.6 4 -2478.024 6 -2498.14 -2523.74 -2532.58 -2566.42
-2457.91 -2478.3288 6 -2498.45 4 -2524.05 -2532.89 -2566.72
-2458.21 -2478.6336 4 -2498.75 5 -2524.35 -2533.19 -2567.03
-2458.52 5 -2478.9384 -2499.06 -2524.66 6 -2533.5 -2567.33
-2458.82 5 -2479.2432 -2499.36 -2530.14 -2533.8 -2567.64
-2459.13 4 -2479.548 -2499.66 -2530.45 -2534.11 -2567.94 4
-2459.43 -2479.8528 4 -2500.27 -2530.75 -2534.41 -2568.24 4
-2459.74 -2480.1576 -2500.58 4 -2531.06 -2534.72 -2568.55 4
-2460.04 4 -2480.4624 -2501.19 -2531.36 -2535.02 -2568.85
-2460.35 -2481.3768 4 -2501.49 -2531.67 -2535.33 -2569.16 4
-2460.65 6 -2481.6816 5 -2501.8 5 -2531.97 -2535.63 -2569.46
-2460.96 4 -2481.9864 4 -2502.1 5 -2532.28 -2535.94 -2569.77 4
-2461.26 -2482.2912 5 -2502.41 4 -2532.58 -2536.24 -2570.07 4
-2461.56 8 -2482.9008 5 -2502.71 6 -2532.89 -2536.55 -2570.38 4
-2461.87 4 -2483.2056 -2503.02 8 -2533.19 -2536.85 -2570.68 4
-2462.17 5 -2483.5104 4 -2503.32 -2533.5 -2537.16 -2570.99
-2462.48 4 -2483.8152 -2503.63 8 -2533.8 -2537.46 -2571.3
-2462.78 -2484.12 4 -2503.93 -2534.11 -2537.76 -2571.6 4
-2463.09 8 -2484.4248 -2504.24 -2534.41 -2538.07 -2571.9 5
-2463.39 6 -2484.7296 -2504.54 5 -2534.72 -2538.37 -2572.21 4
-2463.7 -2485.0344 5 -2504.85 5 -2535.02 -2538.68 -2572.51

[ -2572.82 5

Figure 8

HFU'’s distribution across core depth intervals.
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Correlation coefficients for ANN.
Train Data: R=0.7204 Test Data: R=0.70063
1
8 5 o O  Data
o g : Fit K )
t o5 - Y=T|  QoLm Lo 1 ||~ Y=T /!
— + ,
= T 06 , 1
> 3 o 4
b @) o
;,E 5 04 o a8 RV-os
5 e o0 © %
e} N 0.2 o . ® 1
o o O// < o O
lII Ill O @/O 8 o
+— 4 OC QD © Q/ i
> > O @ XDg
= 8 02tP © 1
] > O@)Q O
@] o )
0.4L7 ,
0 0.5 1
Target Target

Figure 10
Correlation coefficients for ICA optimized ANN.

7. Conclusions

1. In this paper, imperialist competitive algorithn©f) was applied to multilayer perceptron
(MLP) neural network and flow units clustering;

2. Data preprocessing of real well log and core datproved the correlations between the
inputs and output by data normalization and fittgri

3. ICA as a global searching evolutionary method heitielb performance in flow zone index
(FZI) clustering compared with conventional K-meamsthod, because of the dependency
of K-means method on the initial condition of ckritg and sticking at a local optimum.
The results showed that ICA determined the optimeights and biases for MLP and
improved the disadvantages of the gradient-basek rapagation algorithm such as over
fitting and low convergence speed;
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4. For future work, the architecture adaption andriewy rules of neural network can be
optimized by improved ICA methods such as evolvi@A and new optimization
algorithms or ICA combined with chaos theory.

Nomenclature

DT : Sonic travel time
FZI : Flow zone index
GA : Genetic algorithm
ICA . Imperialist competitive algorithm
LLD : Deep resistivity
MLP : Multilayer perceptron
NPHI : Neutron porosity
PSO : Particle swarm optimization
RHOB : Bulk density
RQI : Reservoir quality index
SA : Simulated annealing
TS : Tabu search
References

Abdechiri, M., Faez, K., and Bahrami, H., Adaptilaperialist Competitive Algorithm (AICA),
Cognitive Informatics (ICCI), ® IEEE International Conference, 2010.

Abdi, B., Mozafari, H., Ayob, A., and Kohandel, Rmperialist Competitive Algorithm and Its
Application in Optimization of Laminated Compos8é&uctures, European Journal of Scientific
Research Vol. 55, No. 2, p. 174-187, 2011.

Abdi, Y., Ghane, M., and Haghighi, A., Integrateds@rvoir Characterization and Modeling of One
Iranian Naturally Fractured Reservoir Using Laboratand Field Data, SPE/EAGE Reservoir
Characterization and Simulation Conference, 2007.

Ahmadi, M. A., Ahmadi M. R., and Shadizadeh, S. Rvplving Artificial Neural Network and
Imperialist Competitive Algorithm for Prediction iPeeability of the Reservoir, Neural
Computing and Applications, p. 1-9, 2012.

Amaefule, J. O., Altunbay, M., Tiab, D., Kersey, . and Keelan, D. K., Enhanced Reservoir
Description: Using Core and Log Data to Identify digulic (Flow) Units and Predict
Permeability in Uncored Intervals/wells, SPE Anndaichnical Conference and Exhibition,
1993.

Atashpaz-Gargari, E. and Lucas, C., Imperialist @etitive Algorithm: An Algorithm for
Optimization Inspired by Imperialistic Competitioim, Evolutionary Computation, CEC, IEEE
Congress on, p. 4661-4667, IEEE, 2007.

Duan, H., Xu, C,, Liu, S., and Shao, S., Templatding using Chaotic Imperialist Competitive
Algorithm, Pattern Recognition Letters 31, No. 131868-1875, 2010.

Ebrahimzadeh, A., Addeh, J., and Rahmani, Z., @bi@Zhart Pattern Recognition Using K-MICA
Clustering and Neural Networks, ISA Transactionsl. 81, No. 1, p. 20111-119, 2012.

Fathollahi, S., Permeability Prediction by Usingifieial Neural Networks and Hydraulic Flow Units
in a Reservoir in Southwest of Iran, M.S thesidrdteum University of Technology, Iran, June
2007.



S. H. Hosseini Bidgoli et al. / Identifying Flow ithUsing an Artificial Neural Network ... 25

Gentry, M. D., Applications of Artificial Neural Neorks in the Identification of Flow Units, Happy
Spraberry Field, Garza County, M.S. thesis, Tex&MAJniversity, 2003.

Khorani, V., Forouzideh, N., and Motie Nasrabadi, Artificial Neural Network Weights
Optimization Using ICA, GA, ICA-GA and R-ICA-GA: Quoparing performances, Hybrid
Intelligent Models and Applications (HIMA), IEEE Washop on IEEE, 2011.

Kotsiantis, S. B., Kanellopoulos, D., and PinteRsE., Data preprocessing for Supervised Leaning,
International Journal of Computer Science, VoN@, 2, p.111-117, 2006.

Kumar, A., Artificial Neural Network as a Tool féteservoir Characterization and its Application in
the Petroleum Engineering, Offshore Technology €marice, 2012.

Lloyd, S., Least Squares Quantization in PCM, Imfation Theory, IEEE Transactions, Vol. 28, No.
2, p. 129-137, 1982.

Mahmoudi, Tayefeh, M., Forouzideh, N., Lucas, @ daghiyareh, F., Artificial Neural Network
Weights Optimization Based on Imperialist CompeditiAlgorithm, In 7th International
Conference on Computer Science and Information fi@olgies (CSIT'09), Yerevan, p. 244-
247, 20009.

Mohaghegh, S., Virtual-intelligence Applications Retroleum Engineering: Part I-Artificial Neural
Networks. Journal of Petroleum Technology. Vol. 88, 9, p. 64-73, 2000.

Nazari-Shirkouhi, S., Eivazy, H., Ghodsi, R., Reza&., and Atashpaz-Gargari, E., Solving the
Integrated Product Mix-outsourcing Problem Using timperialist Competitive Algorithm,
Expert Systems with Applications, Vol. 37, No. p27615-7626. 2010.

Niknam, T., Taherian Fard, E., Ehrampoosh, S., Rulista. A., A New Hybrid Imperialist
Competitive Algorithm on Data Clustering, Sadhavial, 36, No. 3, p.293-315, 2011.

Niknam, T., Taherian Fard, E., Pourjafarian, N.d &wousta, A., An Efficient Hybrid Algorithm
Based on Modified Imperialist Competitive Algorithemd K-means for Data Clustering,
Engineering Applications of Artificial Intelligenc&/ol. 24, No. 2, p. 306-317, 2011.

Osborne, J. W., Improving your Data TransformatioApplying the Box-Cox Transformation,
Practical Assessment, Research & Evaluation, \@INDb. 12, p. 1-9, 2010.

Rajabioun, R., Atashpaz-Gargari, E., and LucasQBlpnial Competitive Algorithm as a Tool for
Nash Equilibrium Point Achievement, Computation&iefice and its Applications, ICCSA,
Springer Berlin Heidelberg, p. 680-695, 2008.

Shahvar, M., Kharrat, R., and Mahdavi, R., Incogbioig Fuzzy Logic and Artificial Neural Networks
for Building a Hydraulic Unit-based Model for Peramglity Prediction of a Heterogeneous
Carbonate Reservoir, International Petroleum TeldgyoConference, 2009.

Shenawi, S. H., White, J. P., Ahmed Elrafie, E.d &fl-Kilany, K. A., Permeability and Water
Saturation Distribution by Lithologic Facies andd#gulic Units: A Reservoir Simulation Case
Study, In SPE Middle East Oil and Gas Show and €anice, Society of Petroleum Engineers,
2007.

Tang, H., Meddaugh, W., and Toomey, N., Using atifiéial Neural Network Method to Predict
Carbonate Well Log Facies Successfully, SPE ReseBaxaluation & Engineering, Vol.14,
No.1, p. 35-44, 2011.

Zhang, X., The Application of Imperialist Competdi Algorithm Based on Chaos Theory in
Perceptron Neural Network, Physics Procedia, VB®|.@2 536-542, 2012.



