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Abstract 

Seismic inversion is a method that extracts acoustic impedance data from the seismic traces. Source 

wavelets are band-limited, and thus seismic traces do not contain low and high frequency information. 

Therefore, there is a serious problem when the deterministic seismic inversion is applied to real data 

and the result of deterministic inversion is smooth. Low frequency component is obtained from well 

log data; however, but when well log and seismic data are used together, it faces a problem which is a 

function of the support of scale of measurements. Well log data have a high vertical resolution while 

seismic data represent low details in vertical direction. 

Geostatistical seismic inversion (GSI) is a method to overcome the aforementioned limitations. GSI 

uses well log and seismic data together in the geostatistical frameworks. In this study, a new approach 

of geostatistical inversion based on spectral geostatistical simulation is used. This approach is 

performed in frequency domain and stochastic framework. Distinct from sequential simulation, 

spectral simulation method is a direct method, which does not require an acceptance/rejection step. 

Hence, GSI algorithm based on spectral simulation is fast. This approach is performed in a case study 

of an Iranian gas field in the Persian Gulf basin. The upper-Dalan and Kangan are two main 

formations of this field. The results of GSI are compared with deterministic inversion and it is 

concluded that, as opposed to deterministic inversion, GSI can recover low frequency components. 

Keywords: Geostatistical Seismic Inversion, Deterministic Inversion, Spectral Simulation, 

Geostatistics 

1. Introduction 

Acoustic impedance (AI) is an important rock property that can be obtained from seismic data during 

seismic impedance inversion. Most of seismic inversion methods are based on minimizing differences 

between synthetic seismic and real seismic responses. Synthetic seismic responses are the result of 

convolution of wavelet and earth reflectivity. Earth reflectivity is a rock property, which is a function 

of acoustic impedance. The inversion methods which operate in minimizing error are known as 

“deterministic inversion.” 

Deterministic seismic inversion such as sparse spikes or model-based inversion is smooth in results, 

which is due to its limitations. Francis discussed some of these limitations (Francis, 2006). The 

significant limitation is missing low frequency information due to the band-limitation of real seismic 

data. Since the source wavelet is band-limited and does not cover all frequencies, low and high 
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frequency components are hidden in the seismic responses. Missing the low frequency is important 

due to the fact that low frequency components contain critical information about the absolute 

impedances values (Francis, 2010). Low frequency information can be obtained from well log data. 

For adding log data to seismic data, one may encounter a serious problem, which is known as the 

support of scale measurement of data. Well data have a high vertical resolution versus the seismic 

data. In deterministic methods, the scale-up of well data to larger support measurements is used. 

Scale-up is an averaging method, which reduces variability of measurements, when they are scaled up 

to larger supports. To overcome these problems, seismic data in a geostatistical framework are 

inverted. Geostatistical seismic inversion (GSI) is a method introduced to improve deterministic 

inversion results. 

GSI was introduced and tested by Haas et al. (Haas et al., 1994) for the first time in 1994. They 

employed a sequential Gaussian simulation (SGS) to produce impedance realizations in inversion 

process. In each grid node, a random large trace realization from seismic and log data is generated and 

then the best trace, which becomes data conditioning, is selected. 

Grijalba-Cuenca et al. offered another GSI algorithm, which worked grid by grid cell, instead of trace 

by trace (Grijalba-Cuenca et al., 2000). This algorithm estimated a local probability density function 

(PDF) from the PDF of the available control points by a kriging technique. The stratigraphic and 

structural information is incorporated in this method. This information is available in the form of time 

horizons. The final result is selected in simulated annealing method. 

Simulated annealing and SGS perform in an accepting or rejecting stage. Francis offered a new 

method of geostatistical inversion based on spectral simulation (Francis, 2005). Spectral simulation is 

performed in frequency domain and its main advantage is its fast run-time, due to the fact that a global 

density spectrum is calculated once and the inverse Fourier transform is performed only once to 

generate a realization (Yao et al., 2004). 

Recovering absolute impedance values is important when we should detect the thin bed (Zhang et al., 

2012 and Merletti et al., 2003) or obtain other reservoir properties by high accuracy. In this study, at 

first, the deterministic inversion method is performed on a carbonate field from Iran and then a 

geostatistical seismic inversion based on spectral simulation (Francis, 2010 and Francis, 2005) is 

accomplished in this field. 

2. Geological setting 

This paper is focused on a portion of an Iranian gas field in the Persian Gulf basin. The structure of 

this field is dome shaped, which has a gentle dip on the flanks. Kangan (Triassic) and upper Dalan 

(Permian) are two main formations in this field; each formation is divided into two different layers. 

From top to bottom, K1, K2, K3, and K4 are four reservoir layers in this field (Figure 1). K2 and K4 

are two main gas reservoirs (Tavakoli et al., 2011). This field is a heterogeneous carbonate-evaporate 

reservoir in which dolomite, limestone, and anhydrite are the key lithology of the formations.  

The available data sets of this study belong to four wells and 3D post-stack seismic data. Well logs 

data consist of sonic and density logs, which are used to construct acoustic impedance log (Figure 2). 

Moreover, three interpreted time horizon surfaces termed Dashtak-S7, K1, and K4, are available in 

these data sets. 
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Figure 1 

Stratigraphic chart of the studied field; K1 to K4 are reservoir zones (modified from NIOC documents, 2004).  

3. Data preparation 

The seismic data quality of this field is generally good over the entire time range. The sampling 

interval in the horizontal directions (inline and cross-line) is 1 ms and in the vertical direction is 4 ms. 

Bin sizes of 25 m/line (in the inline direction) and 6.25 m/line (in the cross-line direction) are used to 

acquire the seismic data. 

Tying well log to seismic data is a primary procedure in all interpretation projects. The well data is 

converted from depth domain into time domain in this step. The depth to time model in the well 

location is provided by checkshot data. Then, the density and sonic logs will be combined into 

impedance and reflectivity log. The synthetic seismogram is generated by convolving the reflectivity 

and wavelet. A wavelet must be extracted from the seismic data. Statistical wavelet extraction is a 

common method, when a few pieces of well data are accessible (Edgar and Van der Baan, 2011). A 

wavelet is defined by amplitude and phase spectra. In statistical wavelet extraction, the phase 

spectrum is not computed and must be defined as a known parameter. The spectral time analysis of 

this seismic data evidences a zero phase spectrum. Thus, a zero phase wavelet is extracted from the 

seismic data alone in a statistical method. Then, the synthetic seismic traces are built in each well 

location. The cross correlation between synthetic and real seismic is averagely 0.74 (Figure 3). Figure 

4 demonstrates the final wavelet extracted in the frequency domain. As it is shown, the wavelet is 

band-limited in frequency domain, and hence seismic data are filtered in a band-limited frequency 

bound; therefore, high and low frequencies are lost in seismic data.  

In each geostatistical study, variogram (or other spatial relationship) analysis is performed in initial 

step. Stationarity is the main assumption to calculate variograms. Thereby, the seismic and well data 

must be trendless in variogram analysis. The two graphs in Figure 5 illustrate well data, in which one 

is the original graph, containing a simple linear trend, and the other is the de-trended data.  
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Figure 2 

Well logs data for well B: DT (sonic), RHOB (density), and acoustic impedance versus time (milliseconds). 

 

Figure 3 

The synthetic seismogram and real seismic traces are shown at well B location; the cross-correlation coefficient 

is 0.747078. 

Then, the well log data are used in vertical variogram analysis. Simple linear trend in log data can be 

removed by subtracting a least square fit straight line. In seismic data, the closet seismic attribute map 
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that does not contain trend is relative acoustic impedance. Seismic colored inversion (Lancaster et al., 

2000) is a process that converts seismic data into relative acoustic impedance (Figure 6). Relative 

acoustic impedance is used in horizontal variogram analysis. If there is an anisotropic spatial 

correlation in variogram parameters in different directions, then the anisotropic variogram model must 

be used to interpolate the well data. 

 

Figure 4  

Average wavelet estimated is displayed in the frequency domain. 

 

Figure 5 

(a) Originally AI log data of four wells with trend and (b) de-trended AI log data in time domain. 

4. Deterministic seismic inversion 

Model-based inversion is currently the most popular method to integrate impedances by inverting 

seismic data. Generalized linear inversion (GLI) is a kind of model based on inversion that is used in 

this study as a deterministic inversion method. If it is assumed that M is a vector of model parameter 

and T is a data vector, then the relationship between them reads: 

 T F M
 

(1) 

The inversion for acoustic impedance is not linear; therefore, the above equation should be linearized 

by Taylor series approximation. This problem is an over-determined case, and thus the least square 

solution method can be used to solve it by minimizing the error vector (Cooke et al., 1983). 
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An initial geological model is necessary and defined from picked horizons and interpolated 

impedance values. The simple kriging of acoustic impedance well logs is used in this work. The 

simple kriging is a linear estimation geostatistical method which can mathematically be defined as 

follows (Kelkar et al., 2002): 

   *

0 0

1

 
n

i i

i

X u X u 


   
(2) 

where,         denotes the value at neighboring location and          is the estimated value at 

unsampled location.    is the weight assigned to the neighboring value points and depends on spatial 

relationship between unsampled and neighboring value points. Variogram is the common spatial 

relationship used in geostatistics. The value of variogram for a given lag distance     is the variance of 

pair data X (       X (         ). The half of variogram is described as the semi-variogram. 

 

Figure 6  

Relative AI obtained from SCI on K4 horizon used in horizontal spatial analysis.  

Zones must be defined before creating initial model. A zone is an interval bounded by two seismic 

horizons. At the base or top of the model, the boundaries of a zone are one horizon and the base or top 

boundary of the model. In this study, three zones are introduced. Each zone is used as a stratigraphic 

interval for interpolating well data laterally to generate a 3D impedance model. Stratigraphic layering 

in each zone is proportional to horizon. For each zone, a separated variogram model (Table 1) and 

kriging system solution are used. The initial model described herein is shown in Figure 7. The initial 

model is created by using only log data, which have low horizontal resolution and thus the initial 

model has a low lateral resolution and model is smooth in lateral directions (Figure 7).  

The results of variogram analysis are shown in Table 1. The vertical variogram analysis proposes an 

average variogram model with a range of 22 milliseconds and a sill value of 1; these results are also 

used in geostatistical inversion process. 
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The vertical ranges of variograms are in milliseconds, while the horizontal ranges of variograms are 

specified in meter. Therefore, a conversion of units must be applied to the range of variograms. After 

that anisotropy ratio is computed in each zone. The anisotropy ratio of vertical to horizontal direction 

is 1 to 13 up to 1 to 24 in different zones. This ratio in horizontal planes is 1 to 1.14 on average. The 

sills of variograms are assumed to a normalized value of one. The variogram models in three 

dimensions have been specified as anisotropic spatial functions by changing the ranges of the models. 

The vertical direction (z axis) of the models is parallel to the time axis. However, the horizontal 

directions (x and y axis) are parallel to the bedding. The azimuth of the x axis is 42
o
 and three 

dimensional anisotropic variogram models are generated corresponding to this orientation. Further 

information on modeling anisotropy in 3D is referred to Deutsch and Journel (1992). 

Table 1 

Model parameters of horizontal variograms. 

 Sill (values normalized between 0-1) Range (meters) Model 

Zone 1(inline) 0.85 900 Exponential 

Zone 1 (cross-line) 0.92 1000 Exponential 

Zone 2 (inline) 0.87 1400 Exponential 

Zone 2 (cross-line) 1 1200 Exponential 

Zone 3 (inline) 0.90 1800 Exponential 

Zone 3 (cross-line) 0.98 1600 Exponential 

 

Figure 7 

AI model is created by simple kriging of AI log data. 

The initial model and wavelet is applied to deterministic inversion in the GLI process. The final result 

of deterministic inversion is illustrated in Figure 8 at a well location in impedance domain. Residual 

section, which is the difference between real and synthetic seismic trace, is shown in Figure 9. The 
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residual is useful as a simple and easy method for checking the quality of inversion results. The root 

mean square (RMS) of the amplitude of the residual section compared to the RMS of the inversion 

results is lower than 0.1 in different seismic lines; this is a perfect result for inversion process. 

 

Figure 8 

Quality check between a well of the studied field and deterministic seismic inversion results in acoustic 

impedance domain. 

 

Figure 9 

Residual seismic section; it illustrates dissimilarity between synthetic deterministic inversion and real seismic 

section. 
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5. Geostatistical seismic inversion 

Geostatistical inversion based on spectral simulation (and compared with deterministic inversion) is 

graphically explained in the flow chart of Figure 10. GSI simulates low and high frequency 

information in a geostatistical framework by using well and seismic data together. The inversion is 

performed in the spectral simulation scene conditional on the well impedance data. The spectral 

simulation is based on the relationship among space property, frequency counterparts, and phase 

spectra (Yao et al., 2004). The spectral simulation shares different spectral components to build a 

priori geological model using well and variogram model parameter. The missing frequency band 

component must be simulated within spectral method and added to the model. If the spatial variable of 

the field in frequency domain is known as X(), then |X()| is an amplitude spectrum and the term of 

density spectrum is referred to |X()|
2
. The amplitude spectrum can be honored globally over the 

entire field instead of only within search neighboring as the sequential simulation methods do. A 

global density spectrum is computed from spatial correlation model once and inverse Fourier 

transform is performed just once to generate a realization. Therefore, this simulation method is fast 

and fast Fourier transform was also used herein to further increase the simulation speed. Before the 

spectral simulation is performed, the probability density function (PDF) of acoustic impedance values 

at the well location is transformed into a Gaussian PDF by a normal score transformation. 

In GSI, the input data is composed of seismic, impedance log, horizon data, and wavelet. These data 

are used to build the initial model as well as the deterministic inversion. Eventually, the input data, the 

initial model, and the deterministic inversion are fed as inputs to this algorithm. The standard 

deviation of the kriging associated to the initial model is computed and termed as error grid map. The 

error grid map is standardized to values on a zero-to-one scale. This map is useful to provide a spatial 

well constraint for the GSI process. The spatial constraints provide the seismic contribution 

conditioned to the wells. These constraints are strong when they are close to the well locations (error 

grid values are zero at well location) and weak when away from the well locations at distances greater 

than the radii of well influence (error grid increases to one). The radii of well influence are obtained 

by variogram analysis (variogram range). Therefore, at well locations, the well log data are important 

to build a GSI model, and away from the wells, the seismic contribution is increased. 

The geostatistical methods can provide posterior uncertainty analysis, which is useful for reservoir 

characterization process. 

6. Results and discussion 

The output data of the GSI are impedance realizations. The GSI is not unique in solution; each 

possible solution is referred to as a realization of the simulation. Three of twenty realizations of the 

GSI in this studied field and the mean of the all realizations are shown in Figure 11. 

The inversion results are validated by original log data around well location. The statistical analysis of 

deterministic and geostatistical inversion results and comparison with the original log data are given 

in Table 2. The mean and standard deviation of the results are similar to the log data. It shows that the 

seismic volume is well inverted in both methods. The inversion results are subtracted from the 

original log data and the obtained errors. The mean of the errors are prearranged in Table 2. The mean 

of the error of the GSI is lower than that of the deterministic method. Therefore, the GSI has a better 

performance than the deterministic method. The improvements of the results can be seen in Figure 12. 

These charts show that the inversion results are well correlated in both methods, while the GSI 

improves the predicted AI.  

Geostatistical 
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Figure 10 

A graphical description of comparison between deterministic and geostatistical seismic inversion methods. 

 

Figure 11 

Three GSI realizations of 20 realizations in AI domain (a, b, and c) and their averages (d). 

The seismic data are band-limited; therefore, the deterministic inversion method cannot recover the 

absolute values of the acoustic impedance from seismic trace directly. Seismic original data in this 

Wavelet extraction and well to seismic tie  

Interpolating impedance log values by 
using kriging between siesmic horizons 

Seismic inversion by spectral 
geostatistical simulation in frequncy 

domain 

 Acoustic impedance 
realizations 

Uncertainty 

Seismic inversion by GLI method in 
time domain 

Acoustic impedance 

Deterministic Geostatistical 
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field cover a frequency band in the range of 10 to 70 Hz. A lower 10 Hz pass frequency filter is 

applied to both inversion results, namely deterministic and geostatistical (Figure 13). It is obvious that 

low frequency part is hidden in the deterministic results, and the resolution of the GSI method is 

higher than that of the deterministic inversion. Improving the resolution of the inversion model is 

useful for other steps in reservoir characterization process. Deterministic inversion result, as shown in 

Figure 12, is correlated with log data; it is also observed that absolute impedance values are not 

correctly recovered and the deterministic inversion result is smooth. 

Table 2 

Statistical analysis of the results in AI domain (m/s×g/cm
3
). 

 Mean Standard deviation Mean of error 

Original AI log data 14797 2055 0 

Deterministic AI inversion 14101 2408 615 

Geostatistical AI inversion 15052 2273 355 

 

 

Figure 12 

The AI results of geostatistical (a) and deterministic inversion (b) correlated with the original AI log. 

Another advantage of the GSI method compared to the deterministic inversion method is the 

uncertainty associated with interpolation, which can be computed in the GSI, while it is ignored in the 

deterministic inversion process. A set of realizations of acoustic impedance is used to represent the 
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uncertainty in the seismic inversion. Figure 14 illustrates the standard deviation of all the realizations, 

which were previously simulated. Standard deviation values around the well location are low. Also, 

this analysis shows that variability is increased at some positions where the well data are slightly 

constrained. Hence the uncertainty in the GSI method is related to well constraints in a way that a 

minor constraint on well data increases the uncertainty of the final GSI model. 

 

Figure 13  

Low frequency pass filter is performed on the deterministic results (top) and the GSI method (bottom). 

 

Figure 14 

Standard deviation map of all the realizations in AI domain; variability is increased at the bottom model. 
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5. Conclusions 

The current work presents a new approach to the inversion of 3D post-stack seismic data. This 

approach incorporates well log data with seismic data using a spectral simulation. This method is 

successfully applied to the gas carbonate field data and obtained some conclusions as follows: 

1- Low pass frequency filter on the inversion results shows that the low frequency part is hidden 

in the deterministic results, while it can be recovered in the GSI method;  

2- The GSI, compared to the deterministic inversion, improved the AI prediction;  

3- The variability in the GSI realizations depends on well constraints.  
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Nomenclature 

AI : Acoustic impedance 

GLI : Generalized linear inversion 

GSI : Geostatistical seismic inversion 

    : Lag distance  

M : Model parameter 

PDF : Probability density function 

RMS : Root mean square 

SGS : Sequential Gaussian simulation 

T : Data vector 

        : Sample value at neighboring location 

         : Estimated value at unsampled location 

X () : Spatial variable of field in frequency domain 

|X()| : Amplitude spectrum of sample value  

   : Weight assigned to the neighboring value points 
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