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Abstract 

Chemical flooding, especially alkaline/surfactant/polymer flooding, is of increasing interest due to 

the world increasing oil demand. This work shows the aspects of using alkaline/surfactant/polymer 

as an enhanced oil recovery method in the porous media having a high dead-end pore frequency 

with various dead-end pore parameters (such as opening, depth, aspect ratio, and orientation). Using 

glass micromodels makes it possible to manipulate and analyze the pore parameters and watch 

through the porous media precisely. The results show that polyacrylamide almost always enhances 

oil production recovery factor (up to 14% in comparison with brine injection) in this kind of porous 

media. Except at low concentrations of polyacrylamide and sodium carbonate, sodium dodecyl 

sulfonate improves oil recovery (even 15% in the case of high polyacrylamide concentration and 

low sodium carbonate concentration). Increasing alkaline concentration reduces recovery factor 

except at low concentrations of polyacrylamide and high concentrations of surfactant. 
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1. Introduction 

ASP flooding is still facing some major challenges in produced fluid handling on its way to 

commercial application. While a significant decrease in water cut of produced fluid and an increase in 

oil production have been achieved, alkaline (A), surfactant (S), and polymer (P) in produced fluid 

have resulted in very tight oil-in-water (O/W) emulsion, causing great troubles in surface oil/water 

separation (Li et al., 2013). The main application of surfactants in enhanced oil recovery is to lower 

the interfacial tension between an aqueous solution and oil phases. Lowering of interfacial tension 

recovers additional oil by reducing the capillary forces that leave the oil behind any immiscible 

displacement. This trapping is best expressed as a competition between viscous forces, which 

mobilize the oil, and capillary forces, which trap the oil. For this reason, surface-active agents are 

used to decrease the interfacial tension (IFT) between the oil and water phases (Samanta et al., 2011). 

Alkali/oil interactions result in the emulsification of the oil. The degree of emulsification depends on 

the acid number of the oil (Al-Hashim et al., 2005). 

The displacement mechanism of an ASP flooding is similar to that of micellar/polymer flooding 

except that much of the surfactant is replaced by low-cost alkali. Therefore, the overall cost is lower 

even though the chemical slugs can be larger (Huang and Dong, 2002). ASP flooding pilot can form 
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oil banks, greatly lower water cut, and increase the oil recovery. The incremental oil recovery was 

about 20% over water flooding. However, a major technical challenge is how to significantly reduce 

the amount and the cost of chemicals used such that ASP flooding can become cost-effective as well. 

Field applications show that the concentrations of alkali, surfactant, and polymer remain relatively 

high in the produced fluids of ASP flooding process. Thus, the successful reuse of these chemicals 

can substantially reduce the capital cost and the environmental impact (Shutang and Qiang, 2010). 

While heterogeneity in pore structure is a key concern of researches, it is first necessary to have a 

clear understanding of the baseline behavior when porosity, permeability, and throat size are tightly 

controlled. This control was achieved by manufacturing homogenous carbonate-cemented sandstone 

using the calcite in-situ precipitation system (CIPS). While the recovery of both the refined oil and the 

crude oil was the same after initial waterflood, the crude oil was mobilized more by the ASP process 

through both microemulsion and banking processes (Al-Shahri and Liu, 2010). 

The main purpose of Tong's study (1998) was to support the coming larger scale test projects; thus 

some experimental investigations (at 45 °C) were undertaken in glass micromodels (with two kinds of 

wettability) to study the mechanism of ASP flooding of the residual oil (Daqing waxy crude oil of low 

acid number) entrapped in porous media. 

The capacitance model allows the determination of the amount of dead-end pore space in a porous 

matrix and the effect of velocity on the rate of diffusion into this space (Coats and Smith, 1964). For 

the analysis, the total pore space is separated into a main pore structure contributing to the flow 

through the rock and the dead-end pores serving only for fluid storage (Braun, 1991). The interfacial 

mass transfer and dead-end pore flooding of CO2 miscibility flooding play an important role in 

oilfield. This study is mainly conducted by reservoir flow and supercritical fluid theory. Supercritical 

CO2 miscible flooding mechanism and a special dead-end displacement mechanism are studied 

(Jishun et al., 2010). 

2. Experimental set-up 

Micromodel: understanding of pore-scale transport phenomena can be achieved by microscopic 

visualization of the porous media. Low-pressure, low-temperature glass micromodels have been used 

for recovery evaluation and visualization experiments. The patterns required were carved onto a glass 

surface using laser etching technology with the penetration depth of 0.2 mm. Then, a flat plate was 

attached to the carved plate by heating up to 780 °C gradually and then was cooled down slowly to 

ambient temperature to produce a completely sealed glass micromodel (Figure 1). Glass micromodels 

were generated in the size of 7*11 cm
2
 with a porosity of 0.23. The total pore volume of each 

micromodel was calculated to be about 0.35 cc. Figure 2 shows a schematic of the micromodel set-up. 

Pump: a high-accuracy, low-rate pump (Quizix QL-700) was used to inject fluids into the 

micromodels. The injection rate of the pump was in the range of 6×10
-4

 to 10 cc/min. 

Optical System: a high resolution digital camera (Nikon D-100) was used to take photos from the 

micromodels. These images were used as the inputs of the analysis system. 

Procedure: micromodel experiments were based on the recording of the areal efficiency by taking 

photos at constant time intervals. Before each experiment, the testing glass micromodel was cleaned 

with the sequential injections of toluene. Then, the glass micromodel was saturated with oil 

(hydrocarbon fluid). Afterward, the fluids of interest were injected into the system and recovery 

factors were obtained for each system (fluid and porous media) by using the colored portion of the 

recorded images, which represents the hydrocarbon-occupied area. The injection rate was set at 0.001 

cc/min in this set of experiments because the capillary number roughly calculated to be more than 10
-6
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for this injection rate and the residual oil decreased smoothly. In addition, no fluid turbulence existed 

in this range of injection rate. 

 

 
Figure 1 

Four types of micromodels used in the experiments; base model, side model, down model, and up model 
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Figure 2 

Schematic of the m
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Table 1 

Recovery factors of different fluids in various porous media 

Model 
    

Side Base Down Up 

Material 
Na2CO3 SDS PAM NaCl RF RF RF RF 

(ppm) (ppm) (ppm) (ppm) (percent) (percent) (percent) (percent) 

ASP1 10000 2000 1200 10000 56 69 44 60 

ASP2 10000 2000 600 10000 48 - - - 

ASP3 10000 1000 1200 10000 55 - - - 

ASP4 10000 1000 600 10000 40 - - - 

ASP5 5000 2000 1200 10000 66 - - - 

ASP6 5000 2000 600 10000 22 - - - 

ASP7 5000 1000 1200 10000 51 - - - 

ASP8 5000 1000 600 10000 75 52 67 56 

S1 0 2000 0 10000 27 - - - 

S2 0 1000 0 10000 42 - - - 

P1 0 0 1200 10000 60 - - - 

P2 0 0 600 10000 29 - - - 

S1P1 0 2000 1200 10000 56 - - - 

S1P2 0 2000 600 10000 49 - - - 

S2P1 0 1000 1200 10000 50 - - - 

S2P2 0 1000 600 10000 39 - - - 

Brine 0 0 0 10000 46 47 46 24 

In a surfactant/polymer flooding process, both microscopic and macroscopic efficiencies will 

improve. The fluid with higher concentrations of both SDS and PAM (S1P1) has the best recovery 

among these set of chemicals. S2P2 has the weakest recovery in this series (Table 1, Figure 4). 

  
Figure 3 

Effect of different concentrations of PAM and SDS on oil recovery in side model 
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Figure 4 

Effect of SDS-PAM (SP) injection on oil recovery in side model 

In an ASP process, any increasing in the polymer concentration directly impacts on recovery factor, 

but the degrees of these effects are different. Remarkable difference between ASP5 and ASP6 shows 

that at low concentrations of Na2CO3 and high concentrations of SDS changing polymer concentration 

has the most marked effect on oil recovery. The minimal effect has been observed at low 

concentrations of both Na2CO3 and SDS (ASP7 and ASP8) (Table 1, Figure 5). At high 

concentrations of PAM in ASP flooding, increasing the SDS concentration improves the recovery 

factor (compare ASP5 and ASP7); but at low concentrations of PAM, SDS has an inverse effect on 

ultimate recovery (compare ASP6 and ASP8). This phenomenon has occurred because of viscous 

fingering and early breakthrough (Table 1, Figure 5). Moreover, in all cases, the combination of low 

PAM concentration and high SDS concentration increases the alkaline concentration, which has an 

inverse effect on recovery factor (ASP2 and ASP6). Comparing the recovery factor of the ASP1 and 

ASP5 cases shows the inverse effect of increasing Na2CO3 concentration on recovery factor (Table 1, 

Figure 6). 

  
Figure 5 

Effect of different concentrations of PAM and SDS on oil recovery factor in side model 

3.2. Effect of Dead-end pore orientation on recovery factor for ASP1, ASP8, and brine 

injection 

In ASP1 injection, the base model shows the best recovery among all models. The side model sits in 

the second place. Up and down models come third and fourth respectively (Table 1, Figure 7). In the 
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case of injecting ASP8, the best recovery factor belongs to the side model. Down, up, and base 

models lead to the next highest recovery factors respectively (Table 1, Figure 8). For brine injection, 

the base, down, and side models have respectively the highest recovery factor and are close together; 

but the recovery factor of up model is much lower than the other models (Table 1, Figure 9). 

 
Figure 6 

Effect of Na2CO3 concentration on oil recovery factor in side model 

 
Figure 7 

Effect of dead-end pore orientation on oil recovery factor in ASP1 injection in different micromodels 

 
Figure 8 

Effect of dead-end pore orientation on oil recovery factor in ASP8 injection in different micromodels 



M. Esmaeili et al. / An Experimental Study of Alkali-surfactant-polymer Flooding , … 55 

 

 

 
Figure 9 

Effect of dead-end pore orientation on oil recovery factor in brine injection in different micromodels 

4. Conclusions 

In this work, flooding performances of water, polymer, surfactant, and ASP injection into glass 

micromodels including dead-end pores were investigated and the following conclusions can be drawn: 

1. Polymeric solutions in the presence of surfactant and alkaline increase the ultimate recovery; 

however, the amount of increase in recovery in these solutions are less than polymeric 

solutions without using surfactant and alkaline. 

2. Increasing SDS concentration up to its CMC usually improves recovery; but in some cases 

(low concentrations of both PAM and Na2CO3) it causes inverse results. 

3. Depending on PAM, SDS, and Na2CO3 concentrations, ASP flood can improve or deteriorate 

the recovery performance. 

4. In ASP1 injection, the base model has the best recovery among all the tested models. Side 

model sits in the second place. Up and down models come third and fourth respectively.  

5. In the case of injecting ASP8, the best recovery belongs to the side model. Down, up, and 

base models lead to the next highest recovery factors respectively. 

6. In brine injection, the base, down, and side models have respectively the highest recovery 

factors and are close together, but the recovery factor of up model is much lower than the 

other models. 

Nomenclature 

ASP : Alkaline surfactant polymer 

CIPS : Calcite in-situ precipitation system 

IFT : Interfacial tension 

O/W : Oil-in-water 

ppm : Part per million 

PAM : Polyacrylamide 

RF : Recovery factor 

SDS : Sodium dodecyl sulfonate 
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