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Abstract 

Porosity is considered as an important petrophysical parameter in characterizing reservoirs, 
calculating in-situ oil reserves, and production evaluation. Nowadays, using intelligent techniques has 
become a popular method for porosity estimation. Support vector machine (SVM) a new intelligent 
method with a great generalization potential of modeling non-linear relationships has been introduced 
for both regression (support vector regression (SVR)) and classification (support vector classification 
(SVC)) problems. In the current study, to estimate the porosity of a carbonate reservoir in one of Iran 
south oil fields from well log data, the SVR model is firstly constructed; then the performance 
achieved is compared to that of an artificial neural network (ANN) model with a multilayer 
perceptron (MLP) architecture as a well-known method to account for the reliability of SVR or the 
possible improvement made by SVR over ANN models. The results of this study show that by 
considering correlation coefficient and some statistical errors the performance of the SVR model 
slightly improves the ANN porosity predictions. 
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1. Introduction 

Porosity is a static property of reservoir rock used for characterizing the reservoirs. Although the 
porosity measured from the core sample is generally more acceptable than the log-derived porosity, 
there are some limitations for this measurement approach. Coring is costly and in general is 
performed only in few wells. Even in the cored wells, it may not include some intervals of the 
reservoir. In contrast, well log data provide continuous inexpensive measurements compared to the 
core sampling system for almost all exploratory wells. Some empirical formulas and multiple linear 
regression methods have been proposed to relate well log data and porosity, but they are all case 
dependent and cannot be extended to unknown reservoirs, especially of carbonate type. To predict the 
porosity in carbonate reservoir rocks, known to be highly heterogeneous, a highly non-linear 
regression model is required. Artificial neural network (ANN) a powerful intelligent method has 
successfully been applied to the determination of petrophysical parameters such as porosity and 
permeability from well log data (Mohaghegh et al., 1996; Helle and Ursin, 2001; Rezaee et al., 2008). 
There are yet some challenges to provide reliable and more accurate methods for porosity prediction. 
Recently, a new intelligent method called support vector machine (SVM) has been proposed with the 
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ability of constructing both the classification and regression models (Vapnik, 1998). The intelligent 
method SVM is based on statistical learning approach. Unlike the conventional neural networks, 
which are based on the traditional empirical risk minimization (ERM) principle, SVM’s employ the 
structural risk minimization (SRM) principle. The difference between the ERM and SRM is that ERM 
minimizes the error on the training data, but SRM minimizes an upper bound on the expected risk. It 
has been shown that the SRM is superior to the ERM; thus it causes the SVM to have a greater ability 
to generalize, i.e. high performance in the unseen data. Generalization is the goal in any statistical 
learning (Gunn, 1998). In addition, for a given training set, the SVM approaches to the global minima 
in contrast to the traditional neural networks (Basak et al., 2007). The SVM method has successfully 
been applied to text detection (Kim et al., 2001), handwriting recognition (Choisy and Belaid, 2001), 
the prediction of time series (Drucker et al., 1997), and porosity estimation in a heterogeneous 
sandstone reservoir (Al-Anazi and Gates, 2010). In this paper, the porosity of a heterogeneous 
carbonate reservoir in an oil field located at the south of Iran is estimated using two different 
approaches. To determine the porosity of the reservoir, the ANN as a popular and powerful method 
and the SVR as a more recent and yet powerful intelligent method are used to construct the models. 
Firstly, the sensitivity of SVR model parameters is investigated and an optimum set of parameters are 
selected. Then, the performance of both the SVR and ANN models are assessed and compared.  

2. Support vector machine 

Support vector machine (SVM) method has been applied to both the classification and regression 
problems for which support vector classification (SVC) and support vector regression (SVR) 
terminologies are respectively used (Gunn, 1998). A simple case of SVC is a linearly-separable 
classification in which a linear classifier (a hyperplane) is looked for to perform the separation of 
some data examples required to be separated into two classes. The problem is that there are many 
hyperplanes which separate the two classes, called separating hyperplanes (Figure 1.a). A term margin 
is defined as the summation of the two shortest distances from the separating hyperplane to the 
nearest sample of each class, i.e. the distance between H1 and H2 in Figure 1.b. By SVM method, 
when the margin is maximized, the optimal separating hyperplane is achieved.  

 

Figure 1 

Classification of positive and negative samples by (a) separating hyperplanes and (b) optimal separating 
hyperplane H 

2.1. Support vector regression 

Support vector machine is developed for regression problems by the introduction of the ε-insensitive 
loss function (Vapnik, 1995) given by: 

|���� − �|
ε

= 			0																														��
	|���� − �| ≤ε	|���� − �| −ε				��ℎ�
����																 �	 (1) 
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where, y is the target value. In linear regression, a linear function f(x) is described as: 

f�x� = w. x + b (2) 

where, w is the weight vector; b is bias and “.” denotes the dot product. In epsilon-support vector 
regression (ε-SVR), a function f(x) is searched so that it is at the maximum ε deviation from the target 
value y, and simultaneously ensures the flatness. The flatness in Equation 2 is satisfied by minimizing 
the norm of ||w||2. Introducing the slack variables ξ� and ξ�∗ to be the upper and lower constrains on the 
function f(x), the optimal regression function is given by: Minimize	 %& ∥ w ∥&+ C ∑ ξ� + ξ�∗*�+%   (3) 

with constrains: 

,y� − w. x − b ≤ ξ� + εw. x + b − y� ≤ ξ�∗ + εξ�, ξ�∗ ≥ 0																								 �		 (4) 

where, C is a positive parameter determining the trade-off between minimizing the flatness of the 
function f(x) and the amount up to which deviations larger than ε are tolerated (Smola, 2004). The 
graphical view to the solution of linear SVR is given in Figure 2. The points outside the shaded region 
are called support vectors and are the sufficient points to construct the model. The points inside the 
region are ignored and can be removed (Smola, 2004; Üstün et al., 2006). 
By Lagrangian formulation, Equation 3 with constrains given in Equation 4 can be solved and the 
linear regression reads: f�x� = ∑ �α� − α�∗�x�. x*�+% + b  (5) 

where, αi and αi
* are Lagrange multipliers. This linear regression is now ready to be tested on any 

unseen data x (Basak et al., 2007). 

 

Figure 2 

Graphical view of the solution to the linear SVR (Scholköpf and Smola, 2002). 

2.2. Non-linear regression 

The linear regression discussed is the basis of performing non-linear regression. In a non-linear 
regression, the input space is mapped by a mapping φ into a high dimensional space called the feature 
space. The mathematical formulations used for the linear regression are applied into the feature space. 
The mathematical formulations for the linear regression at the feature space are equivalent to those of 
the non-linear regression at the input space (Basak et al., 2007).  
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Since the feature space is in high dimensions, the solution in this space requires costly computations. 
Therefore, instead, a kernel function K(xi,xj) is introduced in the input space to be equivalent to the 
dot product φ(xi).φ(xj) in the feature space to address the course of dimensionality (Smola, 2004; 
Gunn, 198). Hence the non-linear regression function is given by: ���� = ∑ �23 − 23∗�4��3 , ��53+% + 6 (6) 

An example of the kernel functions is the Gaussian radial basis function (Gaussian RBF) kernel which 
is of the form of K(xi,xj)=exp(-║xi- xj║2 /2σ2), in which σ is the kernel parameter. 

3. Methodology 

The case study of this paper is a carbonate reservoir in an oil field located at the south of Iran. 1463 
data series achieved from six wells of the reservoir containing the core-measured porosity and log 
data. The available well logs are sonic log (DT), bulk density log (RHOB), neutron log (NPHI), 
gamma ray log (GR), and two resistivity logs including deep laterolog (LLD) and shallow laterolog 
(LLS).  
Some statistic information of the core porosity is provided in Table 1. The distribution of core 
porosity is also presented in Figure 3. In Figure 3, the core porosity (Core-PHI) distribution seems to 
be bimodal with the modes around 2% and 15%, but it totally has a mean of 8.5%. According to the 
correlation coefficient R2, the relative importance of the log data and depth of the data used to predict 
the core porosity is presented in Figure 4, which shows that the most important log for prediction is 
the sonic log (DT) and then the neutron log (NPHI).  

Table 1 

Descriptive statistics of core porosity data 

Mean Median Standard 

Deviation 

Sample 

Variance 

Kurtosis Skewness Maximum Minimum 

0.0852 0.0751 0.0638 0.0041 -0.8366 0.4874 0.298 0.004 

 

Figure 3 

The distribution of core porosity with normal distribution 

Both of them together with the density log (RHOB) are known as the porosity logs used for porosity 
determination in empirical formulas. In this study, the logarithms of LLD and LLS are preferred to be 
used instead of LLD and LLS because the logarithms of LLD and LLS have greater correlations with 
porosity than LLD and LLS (see Figure 4). The logarithm of LLD and LLS are also more matched 
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with the normal distribution than LLD and LLS. The distributions of LLD and Log(LLD) are 
illustrated in Figure 5. 

 

Figure 4 

Relative importance of input variables for estimating the core porosity 

 

 

Figure 5 

The distribution of (a) LLD and (b) logarithm of LLD with normal distribution 
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To removes redundancy or duplication from the set of correlated variables, some methods such as 
factor analysis can be used. Herein, because the number of input variables is not too large, the best 
variables are selected by considering different numbers of input variables and checking the 
performance obtained. This is considered especially for DT, RHOB, and NPHI logs in which great 
cross-correlation exist. The best performance is found to be using all of the seven variables, namely 
DT, RHOB, NPHI, Log(LLD), Log(LLS), GR, and Depth. However, it should be noticed that using 
all of the input variables does not necessarily improve the performance. 
The general methodology for estimating core porosity from the log data in this study is that firstly all 
of the data are normalized and 20% of them are randomly assigned as the test set. The remaining data 
are used as the training and validation sets in a k-fold cross-validation process and to obtain the 
optimal parameters of the ANN and SVR models. The ANN and SVR models constructed should be 
then tested on the test set to compare the accuracy of each model. The accuracy measures used here 
are the correlation coefficient (R), the root mean square error (RMSE), the average absolute error 
(AAE), and the maximum absolute error (MAE). The mathematical expressions of each accuracy 
measures are given in Table 2. 

Table 2 

Accuracy measures used to compare the ANN and SVR models 

Accuracy Equation 

Correlation Coefficient R = ∑ �y� − y8���y9� − y98��*�+%:∑ �y� − y8��&*�+% ∑ �y9� − y98��&;<�+%
 

Root Mean Square Error RMSE = ?1l B�y� − y9��&*
�+%  

Average Absolute Error AAE = 1l B |y� − y9�|*
�+%  

 
Maximum Absolute Error MAE = max|y� − y9�|, i = 1,2, … l 

3.1. ANN approach 

To construct an ANN, the type of neural network model and the related parameters such as the 
number of hidden layers, the number of neurons in the hidden layers, etc. should be optimized or the 
typical values of them should be utilized. In this paper, the most commonly used architecture of ANN, 
the so called multilayered perceptron is used. The training algorithm of the model is the back 
propagation (Ligtenberg and Wansink, 2001). In order to speed up the training, the Levenberg-
Marquart algorithm is used (Hagan et al., 1996). The number of hidden layers is the one which is the 
most common. The neurons into the input layer are the well logs and the depth, and the output layer 
consists of one neuron, namely the scalar core porosity, which should be predicted. A tangent sigmoid 
activation function is used for the hidden and output layers and the optimal number of neurons is 
obtained through a 10-fold cross-validation. For this study, the neural network toolbox in MATLAB 
environment (Matlab User’s Guide, 2010) is used. 

3.2. SVR approach 

To construct a model by SVR, firstly, the kernel function, and then the parameters of the model and 
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kernel function should be specified. Table 3 presents the kernel functions used in this study and their 
mathematical expressions. These kernels are three of the most commonly used kernels (Üstün et al., 
2006) with up to one kernel parameter. The linear kernel is simple and does not have any kernel 
parameter; the kernel parameters of the polynomial and Gaussian RBF kernels are the degree (d) and 
width (σ) respectively. It should be noted that using any kernel function, SVR models consist of two 
additional parameters, namely the regularization constant (C) and the ε range, if the ε-insensitive loss 
function is used. Different values of the parameters may have a considerable effect on the accuracy 
achieved by the SVR. In order to obtain good accuracy by the SVR model, the optimal values of the 
model and kernel parameters should be used for constructing a proper model. These parameters can 
be obtained from the prior knowledge on the particular application under study. For instance, if 
previous works show that a polynomial kernel with the degree of 2 is a proper choice for an 
application, this can be used for further studies in that specific application. But without the prior 
knowledge, some optimizations should be performed (Gunn, 1998; Saffarrzadeh and Shadizadeh, 
2012). In this study, for predicting porosity, a grid search method and 5-fold cross-validation is used 
to optimize the parameters. 

Table 3 

Common kernel functions with up to one kernel parameter 

Kernel Function Equation 

Linear 4G�3 , �HI = �3 . �H 

Polynomial 4G�3 , �HI = ��3 . �H + 1�J 

Gaussian RBF 4G�3 , �HI = 	exp	�−∥ �3 − �H ∥&2σ	& � 

The advantage of the grid search is its ability to provide the global minimum (or the optimal point). 
However, it takes a long time for this method to obtain the optimal point, especially when a cross 
validation is also used (Al-Anazi and Gates, 2010). Therefore, in this paper, the required samples for 
each parameter are first reduced to decrease the time. After the global minimum is obtained, another 
grid search is performed on the points around the global minimum to refine the global point. To train 
and test the SVR models, the SVM-KM Matlab toolbox (Canu et al., 2005) is used. However, for 
SVM approaches, many different tools such as LIBSVM, SVMlight, SVMTorch, and DTREG can be 
used. Al-Anazi and Gates predicted porosity in a heterogeneous sandstone reservoir using DTREG 
software (Al-Anazi and Gates, 2010). 

4. Results and discussion 

To construct an SVR model, the SVR parameters should be optimized. Herein, the effect of these 
parameters on the accuracy is first considered, and then SVR and ANN models are constructed and 
compared. 

4.1. Investigating the sensitivity of SVR parameters 

The accuracy of SVR-derived porosity is highly affected by variation in the parameters of the SVR 
model and kernel function. Here, the sensitivity of accuracy with respect to the SVR parameters is 
considered when a Gaussian RBF is used as the kernel function. The parameters that should be 
optimized are C and ε, which are the model parameters, and σ which is the kernel parameter. In order 
to obviously investigate the effect of each parameter, the parameter under study is permitted to vary 
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while the other parameters are set constant. Then, the RMSE’s of the 5-fold cross-validation of the 
normalized data are obtained and plotted versus that parameter.  
Firstly, the effect of parameter C on the accuracy is given. Figure 6 presents the RMSE’s of the cross 
validation with respect to the natural logarithm of C. In Figure 6, parameter C varies between 1 and 
3000 and the global minimum of RMSE occurs at C=exp(5)= 148.4, when the parameters ε and σ are 
constant and equal to 0.1 and 0.5 respectively. If the constant values of 0.001 and 0.4 are assigned to 
the parameters ε and σ respectively, the graph is altered and the global minimum of RMSE occurs at 
C=exp(3.5)=33.12.  

 

Figure 6 

Effect of C parameter on the accuracy of estimation while keeping ε and σ parameters constant 

To analyze the effect of ε parameter on accuracy, the parameters C and σ are assigned constant values 
of 30 and 0.4 respectively and the cross-validation RMSE’s are plotted versus the natural log of ε 
(Figure 7.a). In Figure 7.a, the RMSE is highly affected by the high values of ε. However, almost the 
same RMSE’s are achieved at small values of ε. The question is that which of the ε values is suitable 
to be selected when almost the same RMSE’s are obtained. The small values of ε increase the runtime 
of the model. The effect of variation in ε on the relative time of cross-validation is shown in Figure 
7.b.  

  

Figure 7 

Effect of ε parameter (a) on the accuracy and (b) on the relative time of cross-validation; the parameters C and σ 
are set at 30 and 0.4 respectively. 
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It represents that by choosing ε to be 0.05 (exp(-3)), the running time is 4.4 times faster than when ε is 
4.5e-05 (exp(-10)), at which the minimum of error is obtained; but an increase of 0.002 in RMSE 
should be accepted. In addition, choosing ε equal to 0.0183 (exp(-4)) causes the runtime to be almost 
2 times shorter and to accept only a little increase of 0.0004 in the RMSE. This can be noticed when 
the problem of time limitation exists. 
Figure 8 shows the effect of σ parameter, varying from 0.03 to 20, while parameters C and ε are set at 
30 and 0.001 respectively. The global minimum of RMSE occurs at σ=exp(-1.5)=0.22 and very small 
values of σ have a stronger effect on the accuracy than the larger values. 

 

Figure 8 

Effect of variation in σ parameter on the accuracy while the parameters C and ε are set at 30 and 0.001 
respectively. 

So far, the effect of variation in each parameter on the RMSE, while the other parameters are kept 
constant, has been investigated. The global minimum point achieved in each case is, in fact, the one 
achieved in the direction of the variable parameter and is altered when the constant parameters are 
changed. To find the global minimum point while all of the three parameters C, ε, and σ are varying, 
an optimization method such as grid search is required. In this paper, to perform a grid search method, 
the search range of each parameter is specified and sampled into the required samples. Considering all 
of the SVR parameters, this can be viewed as a grid at any intersection (C, ε, and σ) points at which 
the SVR model is constructed by the training data and tested by the test data. The point providing the 
minimum of the mean square error (MSE) on the test data is referred to as the optimal point which 
gives the best values of the parameters to construct the proper model. Because in this study, a 5-fold 
cross-validation is used during the grid search process, the point giving the minimum of the average 
MSE on the validation set obtained by the 5-fold cross-validation is the optimal point. This method is 
also utilized to obtain the SVR parameters when linear or polynomial kernels are used.  

4.2. Porosity prediction using SVR and MLP approaches 

In this paper, for the MLP approach, the best value of the number of neurons in the hidden layer was 
obtained from a 10-fold cross-validation by checking over many different numbers of neurons. For the 
SVR approach, the best SVR parameters were obtained by a 5-fold cross-validation and grid search 
method as mentioned before. Then, the MLP and SVR models were constructed by the best values. 
The accuracy of each model should now be tested by the test dataset which is unseen to the models. 
The statistical errors and correlation coefficient R of the test dataset for porosity estimation by ANN 
and SVR methods are presented in Table 4, in which the best accuracy is bolded. Among the three 
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kernel functions used in SVR model, the linear kernel provides better MAE. The statistical errors 
RMSE and AAE in Gaussian RBF kernel are smaller than those of other kernel functions used here. 
The performance of ANN has been improved by SVR models using the RBF and polynomial kernels 
because all of the statistical errors are smaller than those of the MLP. However, the improvement is 
not a lot. Using a linear kernel improves only the MAE of the ANN. 

Table 4 

Comparison of statistical error measures and correlation coefficients for porosity estimation by ANN and SVR 
models 

Regression Method RMSE AAE MAE R 

MLP (ANN) 0.0340 0.0238 0.1644 0.8510 

Linear (SVR) 0.0352 0.0257 0.1390 0.8347 

Polynomial (SVR) 0.0322 0.0232 0.1489 0.8648 

RBF (SVR) 0.0293 0.0208 0.1484 0.8891 

  

Figure 9 

Scatter plot of the predicted porosity versus core porosity given by (a) MLP (ANN) model and (b) Gaussian 
RBF kernel (SVR) model  

Comparing the correlation coefficients, SVR models using Gaussian RBF and polynomial kernels 
provide slightly better correlation coefficients than ANN model. The scatter plot of the predicted 
porosity versus core porosity is illustrated in Figure 9; it can be seen in this figure that slightly better 
porositiy valuses are predicted by the SVR model compared to the ANN model. 

5. Conclusions 

In this paper, the effect of different SVR model parameters and Gaussian RBF kernel on the accuracy 
of porosity estimation and prediction was investigated. The porosity was then estimated using both 
SVR and ANN methods with an optimized set of parameters. Through measures of statistical errors 
and correlation coefficients, it was shown that the SVR models using the polynomial and Gaussian 
RBF kernel functions could slightly improve the performance of porosity estimation by ANN. 
Generally, it can be concluded that the Gaussian RBF kernel can provide slightly better results than 
the linear and polynomial kernels and ANN and is considered as a reliable and good alternative to the 
ANN method, especially when the size of training and test data are not large enough. Finally, it 
should be noted that another popular kernel function, other than the linear, polynomial, and Gaussian 
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RBF kernels, is the sigmoid kernel; however, this kernel function has two parameters, which increases 
the modeling runtime and the kernel may not be valid for some values of the parameters. 

Nomenclature 

AAE : Absolute average error 
MAE : Maximum absolute error 
MLP : Multilayer perceptron 
R : Correlation coefficient 
RBF : Radial basis function 
RMSE : Root mean square error 
ŷ : Estimated output value 
αi, αi

* : Lagrangian multipliers 
ξI, ξi

* : Slack variables  
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