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Abstract 

Porosity is one of the fundamental petrophysical properties that should be evaluated for hydrocarbon 

bearing reservoirs. It is a vital factor in precise understanding of reservoir quality in a hydrocarbon 

field. Log data are exceedingly crucial information in petroleum industries, for many of hydrocarbon 

parameters are obtained by virtue of petrophysical data. There are three main petrophysical logging 

tools for the determination of porosity, namely neutron, density, and sonic well logs. Porosity can be 

determined by the use of each of these tools; however, a precise analysis requires a complete set of 

these tools. Log sets are commonly either incomplete or unreliable for many reasons (i.e. incomplete 

logging, measurement errors, and loss of data owing to unsuitable data storage). To overcome this 

drawback, in this study several intelligent systems such as fuzzy logic (FL), neural network (NN), and 

support vector machine are used to predict synthesized petrophysical logs including neutron, density, 

and sonic. To accomplish this, the petrophysical well logs data were collected from a real reservoir in 

one of Iran southwest oil fields. The corresponding correlation was obtained through the comparison 

of synthesized log values with real log values. The results showed that all intelligent systems were 

capable of synthesizing petrophysical well logs, but SVM had better accuracy and could be used as 

the most reliable method compared to the other techniques.  

Keywords: Fuzzy logic, Artificial Neural Network, Support Vector Machine, Porosity log, Mean 

Square Error 

1. Introduction 

One of the far-reaching issues in reservoir evaluation is the prediction of petrophysical parameters 

such as porosity, lithology, shale volume, formation water saturation, fluid contacts, and productive 

zones. These parameters are acquired from well logs. It is quite conventional for several wells in a 

field to have incomplete suites of wire-line logs. This is mainly because a full suite of logs is not 

obtained at the time the well is logged or because of the problems encountered in repeated logging 

such as damaged faulty logging instruments or poor logging conditions in any of the logging runs. In 

recent years, intelligent systems have been deemed as powerful tools for modeling and prediction in 

the petroleum industry. For example, Lim (2003, 2005), Huang et al. (2001), Mohaghegh (2000), 

Cuddy (1998), Soto et al. (1997), Wong et al. (1997) and numerous researchers have applied 

intelligent systems to estimate several reservoir parameters from well log responses. The 

incorporation of intelligent systems including fuzzy logic (FL), artificial neural networks (ANN), and 
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support vector machine (SVM) into the synthesis of petrophysical well log data is investigated in this 

study and the results of the various models are compared with a view to distinguishing the best 

intelligent system for solving problems with different methodologies. 

2. Methods 

2.1. Fuzzy logic (FL) 

A fuzzy inference system (FIS) is a procedure of formulation which utilizes a set of input data to a set 

of output data by dint of fuzzy sets theory (Matlab user's guide, 2009). Fuzzy logic theory is an 

extension of Boolean logic (0, 1), which permits the use of “partial truth” between “entirely true” and 

“entirely false” alternatives and reflects the full range of choices between these alternatives (Zadeh, 

1965). Each fuzzy set is signified by a membership function (MF). MF’s are of various types such as 

Gaussian, triangular, trapezoidal, sigmoid, S-shape, Z-shape, etc. The procedure for fuzzy inference 

systems includes the fuzzification of the input variables, the formulation of the fuzzy “if-then” rule-

base, the expansion of the fuzzy inference (i.e. the application of the fuzzy rules), and non-

fuzzification. Among different types of FIS’s, Sugeno fuzzy inference system was employed in this 

study. Sugeno and Yasukawa (1993) introduced an FIS in which output membership functions were 

constant or linear and were created through the use of a fuzzy clustering process. 

2.2. Artificial neural network  

Artificial neural network has been defined as a computer model which attempts to mimic simple 

biological learning processes and simulate specific functions of human nervous system (Wong et al., 

1997). It has also been referred to as an adaptive parallel information processing system, which is 

capable of developing associations, transformations, or mappings between objects or data. It is 

expected that ANN will succeed in solving complex problems because it utilizes similar methods used 

by millions of neurons in the brain to solve everyday problems. The neurons work together in parallel 

to solve tiny bits of a big problem. This type of problem-solving method has shown great capability in 

pattern recognition. ANN is also capable of learning in order to recognize, classify, and generalize. 

Figure 1 shows the schematic diagram of an artificial neural network. 

 

Figure 1 

Schematic diagram of a neural network with one hidden layer 
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2.3. Support vector machine (SVM) 

Support vector machines (SVM’s) are a set of related supervised learning methods used for 

classification and regression (Gunn, 1998). The most common application form of SVM’s is support 

vector regression (SVR). In the SVR method, learning the n-dimensional function based on the data is 

the most crucial step. This technique is used for the modeling and analysis of numerical data 

consisting of values of a dependent variable and an independent variable. The model is a function of 

the independent variables and one or more parameters. 

SVR is performed primarily by nonlinearly mapping the input space into a high dimensional feature 

space and then running the linear regression in the output space. Thus linear regression in the output 

space corresponds to nonlinear regression in the low dimensional input space. 

Consider a training data set��x�, �y��}��, where xϵR� is the input space. The SVR developed by 

Vapnikrelies for estimating a linear regression function can be given by (Equation 1):  

f�x� = 	 〈w, �x〉� + b                                                                                                                                  (1) 

where, w and b is the slope and offset of the regression line respectively; 〈	. , �. 〉� denotes the dot product 

in X. Flatness in above means that one seeks a small w (Smola and Schölkopf, 2003). A way to ensure 

this is to minimize the norm, i.e. ‖w‖� = 〈w, �w〉�. Writing this problem as a convex optimization 

problem, one may obtain: 

minimize
�� || w ||2 

subject to: 

�y�	 − 〈w, �x�〉� − b ≤ ε〈w, �x�〉� + b − y	 ≤ ε �                                                                                                                            (2) 

As mentioned above, the regression function is calculated by minimizing the objective function and it 

is subjected to the corresponding constraints: 

Minimize  

�� ‖w‖� + c∑ �ξ�, ξ�∗�!�"�                                                                                                                           (3) 

subject to 

# y�〈w. �x�〉 − b ≤ ε + ξ� �〈w, �x�〉� + b − y� ≤ ε + ξ�$% , $%∗ 	≥ 0 �                                                                                                                     (4) 

where, 
�� ‖w‖ is the term characterizing the model complexity (the smoothness of f(x)) and c∑ �$% , $%∗	�	!�"�  is the loss function determining how the distance between f(xi) and the target values yi 

should be penalized. The slack variables $% 	 and $%∗are introduced for the situation that the target value 

exceeds more than ε (see Figure 2). The constant C>0 determines the trade-off between the flatness of 

f (model complexity) and the amount to which deviations larger than 	ε are tolerated (empirical error). 

The commonly used ε -insensitive loss function was introduced by Vapnik. This ε-insensitive loss 

function |ξ|ε is defined by: 

|ξ|) = � 0																									if|ξ| ≤ ε|ξ| − ε														otherwise�                                                                                                          (5) 
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In fact, this particular constraint defines a tube with radius ε around the hypothetical regression 

function in such a way that if a data point is positioned in this tube, the loss function equals 0, while if 

a data point lies outside the tube, the loss is proportional to the magnitude of the Euclidean difference 

between the data point and the radius ε of the tube. The points lying outside the ε tube are named 

support vectors (SV’s), because they will be used to estimate regression function. This implies that all 

other data points are in fact not important for inclusion into the model and can be removed after the 

SVR model has been constructed. Hence usually (much) fewer training points do constitute the 

regression model.  

 

Figure 2 

The soft margin loss setting for a linear SVM  

Graphically, this condition is shown in Figure 2; only the points outside the shaded region contribute 

to the cost insofar as the deviations are penalized in a linear fashion. If one intended to extend the 

SVM linear case to nonlinear functions, the standard dualization method using Lagrangian multipliers 

is necessitated. 

A nonlinear generalization is affected by the fact that the resulting solution f(x) can be explicitly 

written in terms of inner products between data points; these inner products are then replaced by a 

Mercer kernel k�x, �x��� and the resulting solution has the form of:  

f�x� = ∑ �a� − a�∗�k�x, �x�� + b��!�"�                                                                                                           (6) 

a. Kernel functions 

In the non-linear problems, input data are mapped into a higher-dimensional feature space to increase 

the computational power of the linear-learning machine to solve nonlinear problems. Kernel 

representations project the data; thus the nonlinear regression function in an input space is constructed 

by considering a linear-regression hyperplane in the feature space. Therefore, to create a nonlinear 

regression function, the input vectors x are mapped into vectors of a higher-dimensional feature space, 

and then a linear-regression problem is solved in this feature space. In the example shown in Figure 3, 

a separator can easily classify the data into higher dimensions (Manning et al., 2008). Mercer’s 

theorem is used to perform this operation. It states that any continuous, symmetric, positive semi-

definite kernel function k(x,y) can be expressed as a dot product in a high-dimensional space. The 

kernel transformation transforms any algorithm that solely depends on the dot product between two 

vectors. In other words, wherever a dot product is used, it is replaced with a kernel function. The most 
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common kernel functions can be summarized as given in Table 1 (Cristianini and Shawe-Taylor, 

2000). 

 
Figure 3 

Classification of the data into higher dimensions 

Table1 

Common forms of kernel functions 

Type of kernel Form 

Linear 2�3% , 3� = 〈3% , 3〉 
Gaussian Radial Basis Function 2�3% , 3� = 456786599:9  

Sigmoid 2�3% , 3� = ;<=ℎ?2�3% , 3� + @A 
3. Case study 

The data set for this study is obtained from a real reservoir in one of Iran southwest oil fields. A total 

of 1328 data points are used to construct the models. In order to have accurate prediction, the log 

information of three wells No. z1, No. z2, and No. z3 is used. The well No. z1 has a total of 623 data 

points; the well No. z2 has 226 data and the well No. z3 includes a total number of 479 data points. 

The fullest logs consist of the log plots of gamma ray log (GR), bulk density log (RHOB), neutron log 

(NPHI), resistivity log (RT), and sonic travel time log (DT). The appropriate input data for predicting 

NPHI, DT, and RHOB are selected by quick look correction coefficients. Appropriate inputs to 

construct intelligent models are shown in Table 2. As mentioned before, the models are performed 

using three different intelligent systems, namely fuzzy logic, ANN, and SVM. 
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Table2 

Appropriate inputs to construct intelligent models 

Predicted well log NPHI RHOB DT 

Inputs RHOB, DT, and GR NPHI and DT NPHI, RHOB, and GR 

3.1. Fuzzy logic 

a. Sugeno FIS (SFIS)  

In this work, a TSK-FIS was implemented for the prediction of porosity log (RHOB, NPHI, and DT) 

in Matlab. All input and output membership functions (MF’s) and their corresponding parameters 

were attained by dint of a subtractive clustering method and then a set of fuzzy “if-then” rules were 

developed. Subtractive clustering is an operative procedure for the estimation of the number of fuzzy 

clusters and cluster centers in a Sugeno fuzzy inference system (Jarrah and Halawani, 2001). In 

subtractive clustering, each data point is considered as a potential cluster center. Furthermore, in 

subtractive clustering, when the influence range or cluster radius (Ra) is varied, the number of the 

MF’s and “if-then” rules changes as well (Anifowose and Abdulraheem, 2011). A small cluster radius 

usually yields more MF’s and “if-then” rules, whereas a large cluster radius results in fewer MF’s and 

“if-then” rules (Chiu, 1997). With the view to obtaining an optimal number of rules and MF’s, a set of 

values for the clustering radius was specified which ranged from 0 to 1. Consequently, several 

numbers of rules were generated and the MSE for each of these models was measured. The model 

with highest performance (lowest error) was selected as the optimum FIS (Table 3). 

Table3 

The MSE and number of fuzzy “if-then” rules for 10 TS-FIS’s generated by specifying a set of values in the 

closed interval of [0, 1] for clustering radius 

No. Clustering MSE of Fuzzy Model No. of Fuzzy “if-then” 

Rules 

FIS Radius RHOB NPHI DT RHOB NPHI DT 

1 0.1 0.00459 0.00192 0.00223 47 88 55 

2 0.2 0.00331 0.00155 0.00166 17 23 14 

3 0.3 0.00311 0.00148 0.00155 9 12 8 

4 0.4 0.00295 0.00144 0.00182 4 7 4 

5 0.5 0.00439 0.00169 0.00179 3 3 4 

6 0.6 0.00446 0.00161 0.00177 3 3 4 

7 0.7 0.00450 0.00166 0.00178 3 3 4 

8 0.8 0.00578 0.00180 0.00212 1 2 2 

9 0.9 0.00578 0.00259 0.00312 1 1 2 

10 1.0 0.00578 0.00259 0.00340 1 1 1 

b. Neutron log (NPHI) 

Having specified 0.4 for clustering radius, 7 Gaussian MF’s were extracted for the inputs. The 

generated fuzzy “if-then” rules are as follows: 

1. If (RHOB is mf1) and (DT is mf3) and (GR is mf5) then (NPHI is mf 1); 
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2. If (RHOB is mf6) and (DT is mf2) and (GR is mf7) then (NPHI is mf 1); 

3. If (RHOB is mf3) and (DT is mf4) and (GR is mf4) then (NPHI is mf 1); 

4. If (RHOB is mf5) and (DT is mf6) and (GR is mf2) then (NPHI is mf 1); 

5. If (RHOB is mf7) and (DT is mf1) and (GR is mf3) then (NPHI is mf 1); 

6. If (RHOB is mf2) and (DT is mf5) and (GR is mf6) then (NPHI is mf 1); 

7. If (RHOB is mf1) and (DT is mf7) and (GR is mf1) then (NPHI is mf 1). 

c. Sonic log (DT) 

By specifying 0.3 for clustering radius, 8 Gaussian MF’s were extracted for the inputs. The generated 

fuzzy “if-then” rules are as follows: 

1. If (NPHI is mf3) and (RHOB is mf3) and (GR is mf2) then (DT is mf7); 

2. If (NPHI is mf1) and (RHOB is mf6) and (GR is mf5) then (DT is mf4); 

3. If (NPHI is mf5) and (RHOB is mf2) and (GR is mf3) then (DT is mf5); 

4. If (NPHI is mf6) and (RHOB is mf5) and (GR is mf8) then (DT is mf6); 

5. If (NPHI is mf4) and (RHOB is mf7) and (GR is mf4) then (DT is mf3); 

6. If (NPHI is mf8) and (RHOB is mf1) and (GR is mf1) then (DT is mf2); 

7. If (NPHI is mf7) and (RHOB is mf4) and (GR is mf7) then (DT is mf8); 

8. If (NPHI is mf2) and (RHOB is mf8) and (GR is mf6) then (DT is mf1). 

d. Density log (RHOB) 

By specifying 0.4 for clustering radius, 4 Gaussian MF’s were extracted for the inputs. The generated 

fuzzy “if-then” rules are as follows: 

1. If (NPHI is mf2) and (DT is mf2) then (RHOB is mf1); 

2. If (NPHI is mf1) and (DT is mf1) then (RHOB is mf2); 

3. If (NPHI is mf3) and (DT is mf3) then (RHOB is mf3); 

4. If (NPHI is mf4) and (DT is mf4) then (RHOB is mf4). 

For example, Figure 4 shows the TSK-FIS Gaussian membership functions extracted for the 

prediction of RHOB. Subsequent to the preparation of the fuzzy models, the input matrix of test data 

was input to the SFIS models. The measured mean squared error (MSE) functions for the FL-

predicted NPHI, DT, and RHOB in the test data were equal to 0.00145, 0.00156, and 0.00296 

respectively. The R2
 between the measured and FL-predicted NPHI, DT, and RHOB were 0.89 and 

0.87, and 0.91 respectively (Figure 5). For example, a contrast between the measured and FL-

predicted outputs versus depth of the test data is shown in Figure 6. 
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Figure 4 

Membership functions for RHOB modeling by Sugeno FIS 

  

 

Figure 5  

Crossplots showing the correlation coefficients between actual and predicted results using FL for NPHI, DT, 

and RHOB 

R² = 0.87

80

85

90

95

100

105

110

80 100 120

D
T

 f
ro

m
 F

L
(µ

s/
ft

)

Actual DT(µs/ft)

R² = 0.899

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.2 0.4 0.6

N
P

H
I 

fr
o

m
 F

L
 (

v
/v

)

Actual NPHI(v/v)

R² = 0.91

2.3

2.4

2.5

2.6

2.7

2.8

2.9

2.2 2.4 2.6 2.8 3

R
H

O
B

 f
ro

m
 F

L
(g

/c
m

3
)

Actual RHOB(g/cm3)



M. Nouri Taleghani et al. / Development of an Intelligent System to Synthesize … 19 

 

   

Figure 6 

Comparison between the measured and predicted outputs versus depth using FL 

3.2. ANN 

For the prediction of parameters by ANN, a back-propagation network has been chosen owing to its 

high capabilities to well generalize in problems plagued with significant heterogeneity and 

nonlinearity and it is the most commonly used intelligent technique for reservoir characterization. In 

this study, optimum networks are selected with respect to literatures and using trial and error. A two-

layer feed-forward back propagation network and the TRAINLM function were used for training the 

dataset, which was network training function updating weight and bias values according to 

Levenberg-Marquardt optimization. Fifteen percent of input data were randomly selected for either 

testing or the validation of the created model. The data used for testing the model had no effect on 

training and thus provided an independent measure of network performance during and after the 

training. The validation data set were used to measure network generalization, and to halt the training 

when generalization stopped improving. The performance of the network was checked by mean 

square error (MSE) function. The measured mean square error (MSE) function for the ANN-predicted 

NPHI, DT, and RHOB of the test data were equal to 0.00332, 0.00173, and 0.00152 respectively. The 

R
2
 between the measured and the ANN-predicted NPHI, DT, and RHOB were 0.85, 0.86, and 0.92 

respectively (Figure 7). 
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Figure 7 

Crossplots showing the correlation coefficients between the actual and predicted results using ANN for NPHI, 

DT, and RHOB 

3.3. SVM 

Generally, the SVM model includes two phases, namely training and testing; hence the data should be 

divided into two parts. Conventionally, the training data set is larger than the testing data set; thus 

wells No. z1 and No. z3 were selected as the training wells and well No. z3 as the testing data well. 
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measured and SVM-predicted NPHI, DT, and RHOB were 0.86, 0.96, and 0.94 respectively (Figure 

8). 

 

Figure 8 

Crossplots showing the correlation coefficients between the actual and predicted results using SVM for NPHI, 

DT, and RHOB 
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determination model. It is confirmed that SVM could be an appropriate alternative intelligent 

technique for reservoir characterization. 

Table 4 

Comparisons of MSE for (a) NPHI, (b) DT, and (c) RHOB of the test data using different intelligent systems 

(a) 

 

Intelligent Systems MSE Rank 

TKS-F1S 0.00296 1 

ANN 0.00332 3 

SVM 0.00315 2 

 

(b) Intelligent Systems MSE Rank 

TKS-F1S 0.00145 2 

ANN 0.00173 3 

SVM 0.00082 1 

 

(c) 

 

Intelligent Systems MSE Rank 

TKS-F1S 0.00156 3 

ANN 0.00152 2 

SVM 0.00116 1 

Table 5 

Comparison of correlation coefficients of SVR, ANN, and FL methods 

 ANN FL 
SVR Kernel Function 

Linear Sigmoid RBF 

NPHI 0.844 0.886 0.84 0.86 0.85 

DT 0.845 0.866 0.87 0.96 0.91 

RHOB 0.915 0.903 0.91 0.94 0.92 

5. Conclusions 

Intelligent systems are quick, robust, and convenient to use for the prediction of well logs and solving 

complicated problems compared with conventional methods which impose more difficulties, time 

consumption, and high expenses. The results show that ANN, FL, and SVM can successfully be used 

in the quantitative formulation of well log responses in one of Iran southwest oil fields. This study 

indicated that intelligent synthesizing of petrophysical well logs by the use of other well logs data is a 

highly feasible method. Both synthesized and real petrophysical well logs were presented to 

demonstrate that well logs were synthesized with a high degree of accuracy. The comparisons among 

the measured and predicted parameters using different methods showed that all the methods had 

similarities, but SVM could predict better than the others. Accordingly, the SVM technique was 

expected to provide more accurate and suitable results in other wells. This models constructed by 

SVM approach could be extended to other intervals and wells. The developed models did not 

incorporate depth or lithological as a part of the input parameters, meaning the utilized methodology 

was applicable to any field. 
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Nomenclature 

FL  : Fuzzy logic 

ANN  : Artificial neural network 

SVM  : Support vector machine 

BP-ANN  : Back propagation artificial neural network 

DT  : Sonic transit time log (µs/ft) 

GR  : Gamma ray log (API) 

NPHI  : Neutron log (v/v) 

RHOB  : Density log (gr/cm3) $, $∗  : Slake variables σ  : Variance σ�  : Standard deviation 

x  : Input parameter 

y  : Output variable yC  : Estimated output value a	,a∗  : Lagrangian multiplier to be determined ε  : Error accuracy 
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