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Abstract 

Fractured reservoirs contain about 85 and 90 percent of oil and gas resources respectively in Iran. A 

comprehensive study and investigation of fractures as the main factor affecting fluid flow or perhaps 

barrier seems necessary for reservoir development studies. High degrees of heterogeneity and 

sparseness of data have incapacitated conventional deterministic methods in fracture network 

modeling. Recently, simulated annealing (SA) has been applied to generate stochastic realizations of 

spatially correlated fracture networks by assuming that the elastic energy of fractures follows 

Boltzmann distribution. Although SA honors local variability, the objective function of geometrical 

fracture modeling is defined for homogeneous conditions. In this study, after the introduction of SA 

and the derivation of the energy function, a novel technique is presented to adjust the model with 

highly heterogeneous data for a fractured field from the southwest of Iran. To this end, the regular 

object-based model is combined with a grid-based technique to cover the heterogeneity of reservoir 

properties. The original SA algorithm is also modified by being constrained in different directions 

and weighting the energy function to make it appropriate for heterogeneous conditions. The 

simulation results of the presented approach are in good agreement with the observed field data. 

Keywords: Discrete Fracture Network, Correlated Fracture Network, Simulated Annealing, 

Heterogeneous Media, Boltzmann Distribution 

1. Introduction 

Fractured reservoirs, because of their complex geological nature, cannot be described by conventional 

homogenous models. Stochastic approaches are recently employed for the proper characterization of 

heterogeneous fracture networks in porous media. These methods represent local variability and 

uncertainty and are also able to integrate both hard and soft data sources in the modeling process.  

Geostatistical simulation has two major classes of pixel-based and objects-based modeling (OBM). 

The pixel-based technique uses multipoint statistics in a binary space (Guardiano and Srivastava, 

1993) but is not applicable to large scale modeling especially in cases like fracture modeling which is 

used in a wide range from microcracks to major faults. Alternatively, OBM’s, which utilize predefined 

objects carrying several properties in the matrix background, honor the shape and size distribution of a 

wide range of objects as individual elements (Bear et al., 1993). Compared to ordinary grid-based 

methods, this approach is also applicable to large systems and supports stochastic solutions. The main 
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drawback of this class of modeling methods is the difficulty of being conditioned by real data and the 

incorporation of heterogeneities. Simulated annealing (SA), which is based on MCMC, is a 

conditioning method for defining likelihood functions to probabilistically optimize realizations from 

prior and subsequent configurations in an iterative algorithm. Heffer introduced a spatial correlation 

function of fractures as displacement strain vectors using renormalization techniques based on the idea 

of Daly (Daly, 2001) in the representation of stochastic tensor fields for strain modeling (Heffer and 

King, 2006). Masihi applied this method to generate fracture networks based on the assumption that 

the elastic energy in the fractured media follows a Boltzmann distribution (Masihi and King, 2007). 

The spatial correlation expression of fracture displacements is globally minimized by simulated 

annealing algorithm. SA assumes a mechanical equilibrium (Kirkpatrick et al., 1983) in a reference 

rock sample which is equivalent to maximum entropy and minimum energy, i.e. the best statistical 

correlation between the components. Shekhar applied this method to field scale fracture modeling for 

seismic velocity modeling in homogeneous conditions and adapted it by using outcrop observations 

(Shekhar and Gibson, 2008; Shekhar and Gibson, 2011). Hals investigated the correlation of fracturing 

process for two independent injection points in hydraulic fracturing (Hals and Berre, 2012). Masihi 

also applied the method to 3D fracture modeling (Masihi et al., 2012). 

In this work, we first derive the spatial correlation function for discrete fracture network modeling and 

then discuss about SA as an optimization algorithm to minimize the predefined objective function. 

Next step is to integrate geological data and use them to adapt the simulation to a highly tectonized 

region, i.e. the southwest of Iran. To this end, formation microimager (FMI) logs are applied to detect 

the fracture dip and azimuth, well testing is employed to estimate the mean length, and the rock 

mechanic parameters of reservoir rock are collected from DSI logs. Finally, a novel technique is 

presented to condition the algorithm by using the heterogeneities of fractured reservoirs through 

combining grid-based and object-based methods in order to associate the property variation of the 

medium and constrain SA in x and y directions. On the other hand, for better results, rock properties 

and fracture intensity were incorporated in the calculations by the application of weighted energy 

calculation. 

2. Modeling 

2.1. Spatial correlation function of displacement vectors 

To derive an appropriate elastic energy function for the spatial correlation of fractures with 

displacement vectors, elastic medium, i.e. reservoir rock, is considered, where fractures are assumed 

as discontinuities in the system. Fractures are indicated as a displacement vector from x to x’, that is to 

say u(x)=x-x’. The strain vectors have two elastic and inelastic components of u
e
 and u

i
 respectively. 

Similarly, the strain and stress can be decomposed into elastic and inelastic parts: 

= +e
ij ij

e
ij ij ij

S

e e E

σ σ

= +
 (1)

Landau proved that stress tensor could be written in terms of the strain tensor for isotropic elastic 

medium via Hook’s law as given below (Landau and Lifshitz, 1982b): 

2e e e
ij ij ij ije eσ λ δ µ+=  (2)

where, the strain tensor for small deformations is given by: 
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By the assumption of a mechanical equilibrium in the absence of external forces, continuity equation 

in isotropic media becomes: 

0e
jj ij ij ij ij je Sσ σ + ∂∂ ∂ ==  (4)

or 

e
j ij ij j ije Sσ ∂∂ = −  (5)

It can be interpreted as the imaginary body force keeping the fracture open. The total elastic energy in 

terms of strain and stress is 
2

e e
ij ije

E
σ

= . By using the Fourier transform of stress and strain fields, the 

energy reads: 

( )1 1
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µ
σ λ δ δ δ δ  = = + = −    

 (6)

where, standard isotropic elasticity tensor is considered as: 

( )ijal ij al ia jl il jaλ λδ δ µ δ δ δ δ= + +  (7)

Lkl is the linear operator of isotropic elasticity and is given as the inverse of the Green’s function, 

LklGlm=δkm. As mentioned above, we assume that the frequency distribution of the strain energy 

follows Boltzmann probability law:  

( ) exp EP E
E

 −∝  
 

 (8)

It implies that fractures, or dislocations, tend to lie in maximum entropy configuration subjected to a 

fixed mean strain energy, i.e. <E>=kbT, where kb is Boltzmann constant and T is temperature. By 

applying this hypothesis, a spatial correlation between fractures acting as the elastic displacements in a 

real space is given by: 

( ) 3

3 4
( ) ( )

16 1

kl k l
kl kl
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 (9)

Heffer and King rearranged Equation 9 as follows (Heffer and King, 2006):  

2
.

( ) ( ) .

i j

ij
e e
i j

r r

A r
u r u r

rr

η δ
 

+ 
 − =  

(10)

where, δij is the Kronecker delta and η is equal to 3-4 ν; A=<E>/16πµ(1-ν). <E>, µ, and ν stand for 

mean strain energy, shear modulus, and the Poisson’s ratio of the rock sample respectively and satisfy 

the continuity equation (Equation 5). The demonstration of the general class of covariance tensors and 

the above covariance function belongs to Daly (Daly, 2001). It can also be written in the vector form: 

3

.( , ) ( , ).( , )
( ) ( ) .

i j i je e
i j

u u r u r u
u r u r A

r r

η 
− = + 

 
 (11)

where, (ui,uj) is the scalar product of two vectors ui and uj representing two fractures or displacement 

vectors at points i and j with a distance vector of r. The summation of the above covariance function 

for all the pairs of vectors (ui,uj) in the system is our target function in the stochastic simulation. 

Equation 11 can be simplified for 2D medium as: 
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where, α, θi, and θj are the orientation of distance vector r and fractures ui and uj with respect to the 

horizon respectively. 

2.2. Model description 

Equation 12 is applied as the objective energy function of the simulated annealing algorithm 

introduced by Kirkpatrick (Kirkpatrick, 1983). SA enables us to solve combinatorial optimization 

problems involving a large number of independent variables (Tran, 2007; Tran et al., 2006). Unlike 

linear optimization methods, which find the nearest minimum value to the initial state, energy function 

in SA converges to the global optimum. Alongside energy, a pseudo-temperature parameter, T, is also 

defined as a simulation controlling factor. T allows the model to escape local minima and gives it a 

chance to be in a high-energy state even at low temperatures (Aarts and Korst, 1989). It must be noted 

that E and T are not exactly thermodynamic parameters, just as their notations show. 

To start the simulation, an initial configuration of fracture network is needed to be optimized by SA. 

The initial fracture distribution can be assumed to be uniform (random) or the outputs of some other 

faster simulators, according to the generality of the algorithm. The random initiation is preferred 

because the dislocation of large-scale features is hard to correct and random realization implies a 

larger space of uncertainty, which results in more realistic realizations (Deutsch, 2002).  

Subsequently, a perturbation mechanism should be defined to consider small stochastic changes in the 

properties of the objects. In each perturbation, the energy is recalculated to check if it decreases or not. 

If the energy falls, it means that the annealing process is taking place, we are approaching the desired 

configuration, and the change is accepted. However, if it rises, the acceptance of the perturbation 

depends on Metropolis algorithm (Metropolis et al., 1953) proportional to Boltzmann factor (e
-∆E/T

) 

probability. In other words, the acceptance probability is calculated by Paccept=min{1, e
-∆E/T

} and 

compared with a random number in the close interval of [0,1] to prevent trapping in a local minima. 

Moreover, initial T must be high enough to allow energy to freely change and it is recommended that 

T should be set in the same order of magnitude as E. While a set of perturbations proportional to the 

number of objects is implemented and the new energy state is measured, the ratio of the number of 

accepted changes to total perturbation forms is calculated as an acceptance ratio. 

After a set of perturbations, temperature must decrease. A schedule for T reduction as Ti+1=αTi is 

defined, where α is assumed to be 0.97 in this work. In the initial steps, the acceptance ratio (the 

number of accepted changes per all the perturbations) must be over 95 percent for reliable results. 

However, this ratio decreases along the annealing process to hold steady at a certain value which is the 

desired realization. The stopping criterion of the simulation is accepting less than 1 percent of the 

perturbations. Figure 1 briefly displays the flowchart of the SA algorithm used for fracture network 

modeling. 
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Figure 1 

Simple simulated annealing flowchart for global optimization 
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We consider a 2D medium as the simulation area and fractures as strain displacement vectors with a 

length of l, an orientation of θ, and a location vector of r from the origin of coordinates to the center of 

each fracture, randomly distributed through the medium. Perturbation mechanisms are applied 

iteratively to randomly selected fractures. To produce a sufficient number of perturbations that allow 

the objects to vary freely and converge to the global minimum of energy state, averagely ten 

perturbations are assigned to each fracture per every T-step as given below: 

( )0.03 2 1new old
i i Rndθ θ π= + × −  (13-1)

( )0.1 2 1new old
i il l Rnd= + × −  (13-2)

( )0.1 2 1new old
i ir r Rnd= + × −  (13-3)

where, Rnd is a random number from a uniform distribution in the close interval of [0, 1].  

During the annealing process, the first cosine term of the energy function in Equation 12 tends to set 

the fractures in an orthogonal situation while the second combined cosine term tends to set them 

parallel. The η coefficient applies appropriate weight to the first term and determines whether fractures 

lie in perpendicular or parallel sets. η is calculated from Poisson’s ratio and depends on the rock 

properties. Masihi and King accomplished a sensitivity analysis on η values and found out that 

negative values preferred to generate one single parallel set whereas positive values showed two 

perpendicular fractures sets (Masihi and King, 2007). Typical values of ν for subsurface rocks are 

between 0.2 and 0.3 (Engedler and Peacock, 2001), which implies frequently occurring orthogonal 

sets of fractures. 

It must be noted that a finite size model in SA with the truncation of boundaries or the limitation of 

stress field is considered herein. This truncation implies that fractures on the boundaries experience 

lower stress compared to the others and cause artifacts in the final results. To overcome this problem, 

a periodic boundary condition is applied; in other words, same modeling medium is considered next to 

the boundaries in all directions. As a result, the fractures located on the boundaries have their own 

pairs with the same properties on the opposite side, which neutralized the boundary effect. 

2.3. Geological setting 

The variation of tectonic forces in the southwest of Iran has caused extreme stress heterogeneities. The 

folding and faulting through orogeny processes have also intensified the problem. In folding, the 

convex side is thinned and subjected to tension, hence normal faults may occur there; on the other 

hand, the concave side is thickened and subjected to compressional forces, thus generating reverse 

faults. Therefore, different rock mechanical parameters in the vertical direction and obviously different 

fracture densities are expected (Singhal and Gupta, 2010). 

a. Formation microimager (FMI) logging to determine fracture density 

Formation microimager loges are a proper tool for detecting formation discontinuities such as bedding 

surface or cracks. The results of FMI logs of two wells in both sides of the modeling area indicate that 

there are no fractures in the upper middle part of the formation due to a low strain (neutral plane of 

fold) and high rock elasticity. The maximum intensity of fractures is occurred in lower extremes 

(especially in Well #1) due to faulting and high compressional forces, which is categorized as strongly 

fractured in Ruhland’s classification (Ruhland, 1973); The other zones experience a practical to 

average fracturing degree in the same classification. In addition to vertical heterogeneity, the results 
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also show lateral heterogeneity; that is to say that  the trend of the variations in Well #1 is not 

supported by the second well, Well #2 (See Table 1). 

Table 1 

Fracture intensity and density in Wells 1 and 2; zone 4 experiences no fractures 

 Well #1 Well #2 

Zone Thickness Count Intensity AD Count Intensity AD 

1 43 1 0.022472 0.061901 3 0.069767 0.110571 

2 46 9 0.204545 0.244711 20 0.434783 0.892417 

3 76 0 0 0 5 0.065789 0.092732 

4 98 0 0 0 0 0 0 

5 59 0 0 0 16 0.271186 0.647295 

6 181 5 0.030675 0.043846 9 0.05 0.10253 

7 47 205 4.1 4.973084 7 0.155556 0.25984 

Fracture areal density is defined as the summation of length of fractures divided by cross sectional 

area for reservoir simulation aims. A sampling bias, which is inversely proportional to the cosine of 

the acute angle between the borehole axis and the fracture pole, is introduced by Terzaghi (Terzaghi, 

1965). However, the introduced weight factor approaches infinity where fracture pole is at a steep 

angle with respect to the wellbore direction. Priest modified the method to reduce the effect of 

skewing the weighted data by setting a maximum allowable weighting of 10 (Priest, 1993). Table 1 

briefly shows the intensity and areal density of each zone by implementing the above corrections. 

b. Transient well testing analysis to determine fracture lengths 

To convert the areal density to individual fractures, the mean length of fractures is needed. This could 

be achieved by outcrop studies or transient well testing interpretation; however, because the outcrop 

studies may be accomplished kilometers far from the reservoir location and can be subjected to 

weathering and different stresses, they are not suitable for such a region. Alternatively, Warren and 

Root introduced a primary sugar cube dual porosity model by using well tests (Warren and Root, 

1963), which was later extended by Belani et al. to determine block sizes from pressure responses 

(Belani et al., 1988). Block size can be calculated for slabs, cylindrical, or cubic models. Because the 

value of η is between 1.9 and 2 herein, as will be indicated in further calculations, we face two sets of 

fractures. Hence, a cubic or spherical model is used in the calculation of block sizes, i.e. n=3 in 

2

( 2)

m

n n

r
α

+
= , where rm is the characteristic size of the block (Bourdet, 2002). The average value of rm 

is found to be 174.66 ft (53.236 m), which stands as fracture mean length where matrix permeability is 

considered about 1 md. By the estimation of mean length and areal densities, one can find out how 

many fractures will occur in the medium. Contrary to primary continuum models, this length does not 

remain constant and varies due to fracture intensity and density in different directions. Therefore, the 

simulation deduces a distribution of fracture length instead of a single length in the whole media.  

c. DSI logging for rock mechanical properties 

Another important stage of fracture modeling is rock mechanics studies. To obtain the rock modulus, 

the propagation of acoustic waves in the formation is applied. DSI logs provide us with the transit time 

of compressional, shear, and stoneley waves. Shear modulus could be calculated by:  
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where, a=1.34×10
10

 and Poisson’s ratio is defined by:  
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1 1
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  −  =
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 (15)

To incorporate the heterogeneities of rock mechanical parameters in the energy calculation of each 

fracture pair, the geometrical averaging of two values depending on fracture locations are used instead 

of the global values of A and η. Figure 2 shows the variation of these parameters in the formation. For 

simplicity, a value of A equal to 1 is used for homogeneous bodies whereas it gradually varies in 

heterogeneous media. 

 

Figure 2 

Variations of A and etha in the formation; relatively low values in zones 2 and 5 caused high densities especially 

in Well #2 

2.4. Conditioning model with heterogeneous data  

a. Combination of object-based modeling with grid-based technique 

The selected region for modeling suffers from high degrees of heterogeneities in vertical and lateral 

directions as discussed above. 220 and 60 fractures are detected in the first and the second wells 

respectively. The FMI results provide the location and orientation of the fractures; subsequently, the 

calculated mean trace length is assigned to them in the simulation terminology. 4720 randomly 

distributed fractures with a normal distribution on length N (60, 2) are also uniformly distributed to 

stochastically cover the unknown area bounded by the wells, i.e. totally 5000 fractures with respect to 

average density and length. 

To condition such stochastic fractures with deterministic ones, the characterized fractures will 

contribute in energy calculation but not in perturbation, while all stochastic fractures would be 

perturbed. In each iteration, the new energy state calculated from changing one property of stochastic 

fractures determines the correlation of new configuration with the fixed deterministic ones. This is the 

main framework of conditioning (especially in homogenous cases) to set the stochastic fractures in the 

best pattern correlated with borehole fractures during energy reduction.  
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Energy (Equation 12) strongly depends on fracture length as the size of displacement. So it can be 

deduced that the main factor reducing energy is the minimization of fracture length. Such excessive 

length reduction during the annealing process leads to a low energy state made by micro-cracks 

(smaller than 1 mm), which are not necessarily correlated with the other fractures. To overcome this 

problem, the algorithm is constrained by fracture areal density, i.e. fracture length may decrease until 

the total summation of fracture lengths over the simulation area is not lower than the calculated areal 

density. Before length perturbation in each iteration, the algorithm checks the limitation, i.e. 

l
AD

A
>∑ . If it satisfies, the length changes unconditionally; but, if does not hold, it may only 

increase. This procedure regards the desired density while leaving orientation and position to be 

completely correlated without limiting length variations. 

The object-based model introduced by Masihi and King does not incorporate the media heterogeneity 

(Masihi and King, 2007). Also, the implementation of non-constrained SA in the mentioned model 

results in the occurrence of some uncorrelated small fractures required to be omitted, which makes the 

simulation very time consuming. In this manner, the medium is subdivided into 7 layers and 10 

vertical zones due to geologic and geomechanical heterogeneities, and the desired properties are 

assigned to each grid. This technique makes it possible to comprise all the possible changes in the 

media for more reliable modeling. The simulation resolution and also the time of ordinary grid-based 

method strongly depend on the number of grids; therefore, a better resolution is more time consuming. 

However, in the combinatorial scheme, simulation time only depends on the number of objects and 

grids that only possess the desired properties. In addition, the model calculations are performed in the 

entire media rather than separately in each grid. Consequently, the model supports not only the 

quantitative properties of fractures like shape and distribution, but also the qualitative properties of 

each grid, and is able to cope with even small changes in the media. 

This manuscript exclusively discusses the density of fractures as the main reason for geologic and 

geomechanical heterogeneity. Firstly, rock mechanics parameters are assigned to the geologic layers 

as discussed above. Afterwards, fracture density constrains are defined deterministically in the well 

locations (as shown in Table 1) and a linear transition is assumed between them in each layer. Finally, 

the applicability of the proposed method for conditioning the object-based model with heterogeneous 

data is investigated.  

b. Weighted energy calculation 

Fractures are able to be displaced unconditionally in the medium during the simulation. In each grid, 

they are constrained by the corresponding density limitation, which results in the distribution of 

fractures due to grid density. Larger fractures occur in high density zones whereas the small ones 

happen in low density areas. Fractures as shown in apollonian shape filling algorithm by Mandelbrot 

tend to locate as far as possible from each other due to their size, which is also corroborated by the 

parameter r of the objective function of Equation 12 (Mandelbrot, 1982). In real cases, stress shadow 

around fractures affects their distance. Bour and Davy proposed a power law scaling for fracture 

distance of length l to the nearest fracture, i.e. l
m
, where m is in the close interval of [0, 1] (Bour and 

Davy, 1999).  

Therefore, fractures (especially large ones) do not accumulate in high density zones. They prefer to 

distribute with maximum distance with respect to each other and also a minimum length to decrease 

the energy. As a result, fractures may migrate to low density layers where their length is permitted to 

be reduced in the annealing process. It means that low density zones experience higher intensity and 

vice versa. To control such migrations, the energy function is multiplied by the inverse of the fracture 
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intensity of each grid. It must be noted that the multiplier of the layers or grids with no fractures is 

assumed to be equal to 10 (or any numbers larger than the others). This modification causes reverse 

migration to high density zones to satisfy the presence of large fractures in high density zones and the 

small ones in low density areas. 

3. Results and discussion 

The simulation is conducted with an initial temperature of 1,000,000 with a 3% decrease per each T-

step. the modeling area is subdivided to 70 grids (7 vertical and 10 in x-direction) to incorporate the 

heterogeneities in both directions. The results are presented in Figure 3 after 725 temperature steps 

(over 3.4×10
6
 iterative perturbations) to reach the thermal equilibrium, i.e. an acceptance ratio about 1 

percent. An initial increase in energy is because of length enlargement (up to 90 m) in high density 

zones due to the constrained simulation related to layer 7 in Well #1 and layers 2 and 5 in Well #2. 

Fortunately, the assumption of linear lateral density variation is completely supported by the model 

and constrains are satisfied as shown in Figure 4.  

Furthermore, the average length of fractures from the simulation, namely about 56.5 m, is verified by 

data of the well test (Figure 5-a). On the other hand, the orientation of the simulated fracture sets, 

which is about 15.4 and -74.6 degrees in the Cartesian coordinate system, is in good agreement with 

the dip angle of deterministic fractures measured by FMI (Figure 5-b). 

 

 

Figure 3 

Realization of 5000 fracture networks: a) the distribution of fractures due to their location and length respect to 

desired densities; b) the plot of energy and acceptance ratio versus T-steps; the initial increase is the response of 

length increasing to adopt the model with the applied constrains; convergence is reached through 725 steps. 
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Figure 4 

2D areal density variation; the satisfaction of vertical constrains and linear variation:

simulation outputs. 

a 

b 
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Figure 5 

a) Histogram of stochastic fracture length satisfying well test mean length; b) orientation of stochastic fractures 

follows wellbore fracture dip angle 
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4. Conclusions 

This current work presents a discrete fractures network model based on the strain displacement vectors 

for fracture network modeling. The model applies SA to optimize the spatial correlations of fractures 

for generating realizations of network by assuming that the energy follows Boltzmann distribution. A 

comprehensive heterogeneity study on rock mechanics parameters, fracture intensity, and areal density 

is also carried out to modify the algorithm to be conditioned with real data considering heterogeneity. 

To satisfy the desired constrains and control the unwanted migration of fractures toward low density 

zones, weighted energy calculation with respect to the inverse of fracture intensity is shown to be 

applicable.  

Good agreement of the simulation results with experimental data demonstrates that conditioning the 

object-based model with heterogeneous data is feasible by means of gridding technique and 

constrained simulated annealing. This method is applicable to comprehensive fracture modeling on a 

field scale under wide heterogeneity conditions. 
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Nomenclature 

DTC : DSI compressional wave transit time 

DTS : DSI shear wave transit time 

E : Energy 

Eij : Inelastic strain tensor 

eij : Strain tensor 

FMI : Formation microimager 

l : Length of fracture 

Lkl : Inverse of the Green’s function  

n : Families of fissures plane 

r : Location vector 

rij : Distance vector 

rm : Characteristics size of matrix block 

Sij : Inelastic stress tensor 

T : Temperature 

u  : Displacement vector 

α : Orientation of distance vector 

δ : Kronecker delta 

θ : Orientation of fracture 

λijal : Standard isotropic elasticity tensor 

µ : Shear modulus 

ν : Poisson’s ratio 

ρb : Bulk density 

σij  : Stress tensor  
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