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Abstract

Enhanced oil recovery using nitrogen injection isc@ammonly applied method for pressure
maintenance in conventional reservoirs. Numericaliations can be practiced for the prediction of
a reservoir performance in the course of injectimtess; however, a detailed simulation might take
up enormous computer processing time. In such casesnple statistical model may be a good
approach to the preliminary prediction of the psscewithout any application of numerical
simulation. In the current work, seven rock/flugservoir properties are considered as screening
parameters and those parameters having the maosidecable effect on the process are determined
using the combination of experimental design temqles and reservoir simulations. Therefore, the
statistical significance of the main effects antkractions of screening parameters are analyzed
utilizing statistical inference approaches. Finalhe influential parameters are employed to craate
simple statistical model which allows the preliminarediction of nitrogen injection in terms of a
recovery factor without resorting to numerical siations.

Keywords: Nitrogen Injection, Experimental Design, Reser&imulation, Hypothesis Testing,
Recovery Factor

1. Introduction

Screening analysis is a methodology applied etthaelect viable processes for a set of condit@mns
to determine the dominant parameters in a particakchanism. In petroleum engineering, screening
is the first step before applying an enhancedegibvery method to any reservoirs. The study nogmall
consists of a complete study of oil properties ses®rvoir characteristics. Most of the oil companie
have their own technical screening for enhancedeoibvery (Alkafeef and Zaid, 2009). In such cases,
a reservoir rock and properties are usually contpavigh those of successful EOR experiences to
choose a promising method among others. Screeniteyiz for different enhanced oil recovery
techniques have been comprehensively studied ifitdrature (Haynes et al., 1976; Bailey et al.,
1984; Taber et al., 1997). Some examples of diftelEEOR methods in the United States carbonate oil
reservoirs are reviewed in reference (Manriquel.et2807). Conventional and advanced screening
methods for evaluating the applicability of EOR g@sses to a particular field are also discussed
elsewhere (Manrique and Pereira, 2007). Commeagialytical tools and the direct comparison of
reservoir properties to international field expedes are classified as conventional techniques,

" Corresponding Author:
Email: moradi.s@ait.put.ac.ir



44 Iranian Journal of Oil & Gas Science and Techngldgol. 1 (2012), No. 1

whereas an advanced approach includes artifictelligence. The screening studies performed by
Alkafeef and Zaid (2009) and Alvarado et al. (2088 the examples of a conventional and advanced
approach, respectively.

After being introduced to the petroleum engineeiinthe early 90's, the design of experiment (DOE)
has been widely used to filter the main parameteEOR techniques (Egeland et al., 1992; Damsleth
et al., 1992; Eide et al., 1994; Larsen et al.,4)9%he application of designed numerical simuladio
and response surfaces to screening, uncertaintlyss)aforecasting, and optimization in the
predevelopment study of a reservoir in Gulf of Mexis demonstrated and, afterwards, the analysis of
variance (ANOVA) is used to determine the most @ffe parameters (White and Royer, 2003).
Some investigators applied a standard design oérerpnt such as Plackett-Burman or factorial
design to examine the parameters (Li and FriedmaQAs; Parada et al., 2005; Liu et al., 2008;
Adepoju et al., 2009). Sector or reservoir geolalgimodels were utilized in this approach and the
simulation results (e.g., net present value, oddpction rate, cumulative production, etc.) were
analyzed by Pareto chart. Vanegas Prada and C2988)(used experimental design techniques to
develop a response surface correlation for thenaston of steam assisted gravity drainage (SAGD)
performance. Before proposing their quadratic mothely studied the most effective parameters by
fitting the net present value (NPV) to a linearresgion model. The parameters with coefficients
having the most statistical significance were gel#@s the most influential parameters. Moreover,
they emphasized the great significance of a redderrange for each parameter in the design of
experiments (Amudo et al., 2009; Taber et al., J9%hey showed that the incorrect ranges could
cause the Pareto chart to be wrongly interpretedhé screening process. Moradi et al. (2010)
determined some important parameters in immisdilitidgen injection in a conventional reservoir
model. They analyzed the results by hypothesisanadtdemonstrated the output graphically using
Pareto chart.

In the present study, seven rock/fluid reservamperties are selected as screening parameterthend

dominant parameters having the most influentiagé@ffon the performance of nitrogen injection

projects are obtained by the combination of sinmtatand statistical science. Fractional factorial

design, which is the most commonly used methodhan design of experiments, is employed to
characterize several simulation models to be runabgommercial simulator. Subsequently, the
obtained oil recovery factors from various scergrizhich are computed by the simulator, are
examined by static inference approaches. Finallypoglel is developed for the assessment of the
performance of nitrogen injection using a toolb&MATLAB.

2. Methodology overview
2.1. Simulation model descriptions

As shown in Figure 1, a sector model is construdtedscreen the parameters influencing the
performance of nitrogen injection. The reservoiagsumed to be homogenous and anisotropic. No
aquifer and initial gas cap zones are consider¢ademmodel.

The model is 609.6 m (2000 ft) in length and 30#.81000 ft) in width and consists of three layers.
The production well produces at a constant prodnatate whereas the injection well is controlled by
a constant bottom-hole pressure constraint. A gasiltratio (GOR) of 50 Mscf/stb is used as a
constraint for stopping the simulation runs of greduction well. The initial reservoir pressure is
considered to be equal to 31.0264%P@ (4500 psi) at the crest of the sector. Theveseproperties
are shown in Table 1.
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Injection Well

Production Well

Figurel
A schematic representation of sector model

Tablel
Summary of the reservoir properties
Property Valueor Equivalent

Sor 0.15

Sic 0.02
Rate of production (Q) 200 STB/D

¢ 0.15

Equation of State (EOS) Peng-Robinson

ko/Kn 0.10

2.2. Parametersof study

Screening parameters (Table 2) in a nitrogen iilgagbrocess are collected from literature based on
conventional screening experiments and other similarks by combining DOE with reservoir
simulations. Reservoir thicknesk),(absolute horizontal permeabiliti,), connate water saturation
(Sw), threshold capillary pressur@.), pore size distribution parametet)( oil viscosity {4) and
reservoir dip are regarded as the parameters igaést for screening purposes, A, andP, are
used to calculate relative permeability and capili{aressure curves, which is based upon the Brooks
and Corey equations. These equations are apphed #heir adjusting parameters allow us to check
how the curvature and endpoints of the relativemgability curves will affect the injection
performance. These equations are as follows (Ca854):

Ke wt = [1_ S\/I:IZ |:1_( $A);:| 1)
e =(S) 7 2
where,

_Se” S

Su = 1-s 3)
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also, k. is wetting phase relative permeability, .« Stands for non-wetting phase relative
permeability, andirepresents pore size distribution parameter.

For capillary pressure curve, one may obtain:

P= RS, @

where,P. andP, are capillary pressure (psi) and threshold capilsessure (psi) respectively.

Table2
Variation ranges of the screening parameters
Parameters Unit Min. (-1) Max. (+1)
Thickness If) ft 180 1000
Absolute horizontal permeabilitk) mD 35 500
Connate water saturatio8,() fraction 0.1 0.4
Threshold capillary pressurBy) psi 0.75
Pore size distribution parametel) ( dimensionless 15
Oil viscosity (14) cP 0.74 3.1
Reservoir dip degree 5 40

Two different oil samples are considered to studydffect of oil viscosity/). The fluid properties
of the samples are shown in Table 3.

Table3
Characteristics of oil samples
Parameters Unit Light Oil Heavy Oil
Molecular weight of @. (MW C-.) Ibm/Ibmol 181.48 302.51
Specific gravity of G, (SG G.) fraction 0.885 0.939
Bubble point pressuré>() psi 1879.69 1637.48
API degree 30.82 20.14
Gas to ail ratio (GOR) scf/stb 601 307
Qil viscosity at initial pressure) cP 0.74 3.1
Reservoir temperature °F 200 220

2.3. Design of experiments (DOE)

Experimental design is a statistical technique #iatvs obtaining maximum information on a process

at a minimum cost. This method is used to deterrigespace variation of the results due to the
variations in the input parameters of a given pgsec&enerally, experimental design techniques @efin

either the appropriate runs or the combinatiompfut parameters to be used during experiments for
the purpose of maximizing the information accordingthe established objectives (Perada et al.,
2005).

Two-level fractional factorial design is a commathinique for screening analyses (Montgomery,
2001; NIST/SEMATECH, 2006). Although three and ndixéevels of this design have been
mentioned, they have received little attention dmehe required number of experiments and the
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complexity of analysis (Hinkelmann and Kempthor@808). In two-level designs, each parameter
takes minimum and maximum levels which are usudlland +1 respectively. If there akdactors,
2“different cases exist for all possible combinatiofsactional factorial design selects an adequate
fraction of these combinations to reduce the nundieuns, albeit at the expense of confounding.
Confounding means that the estimated value of ticpkar effect comes from both that effect itself
and contamination from higher order interactionardldetails about fractional design can be found
elsewhere (Box et al., 2005; NIST/SEMATECH, 2006pr#yjomery, 2001; Lazic, 2004; Moradi et
al., 2010).

Thirty two (32) simulation experiments were propbdg the fractional factorial design to screen the
mentioned parameters. The variation ranges of ¢reesing parameters and the matrix design of the
simulations are given in Tables 2 and 4 respectividhe range of the parameters is determined do tha
most of conventional fields would lie within thdteria of the investigation. However, limitationa o
simulation runs for all cases are included; in ptlerds, the ranges should be managed so that one
can run the entire designed table without any ismtancy during the simulation. All the simulation
experiments run by the reservoir engineering sitoulavere regarded as a response surface. The
corresponding oil recovery factors were calculatetil reaching the limiting GOR of 50 Mscf/stb.

In this work, screening analysis is applied to detee dominating parameters, which are then used
with the experimental design method and regrestchniques to create a statistically significant
correlation.

2.4. Statistical analysis of main effects

The main effect of any factors can be determine{Muyradi et al., 2010):

Main effect=(Average recovery factor when the paantakes maximum .
level) -(Average recovery factor when the paramigkes minimum level) ©)

The main effects of different parameters are givefiable 5. For example, the main effectkgfs
equal to 12.64, denoting that increaskagrom 35 mD to 500mD causes recovery factor todase

by approximately 12.64%. The statistical significarof this figure cannot be understood unless the
related variance is available. We resolve this ds®y calculating parameter effects in paired
experiments. For each parameter, the experimeatsedected one by one and a conjugate is found for
the selection. The paired experiments should bsirasar as possible from all the factors, but the
particular parameter of interest, viewpoints. K tthesign of experiments is balanced, the pairimg ca
be made with no problem. Generally, the differeimceecovery factors of corresponding experiments
in a pair is the sum of two or more effects (Moratlal., 2010). For example, in order to estimage th
thickness effect in the paired experiments of 1d hrone may write:

(Recovery factog)-(Recovery factog)= Thickness effect-Viscosity effect (6)

where, the subscripts denote experiment number Trabte 4. Here, the viscosity effect is introduced
into Equation (6) because experiments 17 and lddferent not only in thickness, but also in
viscosity. If the viscosity effect is estimateditg/main effect, the thickness effect in Equati6pgan
then be calculated. For the other parameters, @yeconsider suitable corresponding experiments by
pairing and replacing the extra introduced effedth their main effects and then calculating thieetf

of the desired parameter. Thus, Fbsimulation experiments, each parameter will hidk& members

as effect data (Moradi et al., 2010). Effect dataplarameters are presented in Table 5.
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Table4
Matrix of runs to perform screening analysis

Exp.No. h ky S Pa A g dip Exp.No. h Kh Swc Pa Ay dip

1 1- 1- 1- - 1- 1 1 17 1 - 1~ 1- 1- 1- 1
2 1- 1- 1- - 1 1 1- 18 1 - 1-  1- 1 - 1-
3 1- 1- 1- 1 1- 1- 1- 19 1 - 1- 1 1- 1 1-
4 1- 1- 1- 1 1 1- 1 20 1 - 1- 1 1 1 1
5 1- 1- 1 - 1- 1- 1- 21 1 1- 1 - 1- 1 1-
6 1- 1- 1 - 1 1- 1 22 1 1- 1 1- 1 1 1
7 1- 1- 1 1 1- 1 1 23 1 1- 1 1 - 1- 1
8 1- 1- 1 1 1 1 1- 24 1 1- 1 1 1 - 1-
9 1- 1 1- - 1- 1- 1- 25 1 1 - 1-  1- 1 1-
10 1- 1 1- - 1 1- 1 26 1 1 - 1- 1 1 1
11 1- 1 1- 1 1- 1 1 27 1 1 1- 1 - 1- 1
12 1- 1 1- 1 1 1 1- 28 1 1 1- 1 1 - 1-
13 1- 1 1 - 1- 1 1 29 1 1 1 - 1- 1- 1
14 1- 1 1 - 1 1 1- 30 1 1 1 1- 1 - 1-
15 1- 1 1 1 1- 1- 1- 31 1 1 1 1 1- 1 1-
16 1- 1 1 1 1 1- 1 32 1 1 1 1 1 1 1

The statistical significance of main effects canebaluated by hypothesis testing which is a stahdar
method of statistical inference (Larsen, and M&0606; Wonnacott, and Wonnacott, 1969). In this
method, two opposite hypothesis are consideredhénfirst consideration, null hypothesis, it is
assumed that the actual effect of a parameterghbgitde (i.e. zero) and the reported value for mai
effect is due to the chance or any other reasoapxbe role of the parameter itself. The altexaati
hypothesis assumes that the nonzero main effeconisnates the real effect of a parameter.
Apparently, if one of them is accepted, the othes i rejected. The credibility of the null hypattse
can be determined by calculating the P-value whiescribes how much it is probable that the null
hypothesis is true (Moradi et al., 2010; Wonnaaot Wonnacott, 1969).

The steps of hypothesis testing can be summargzéallaws (Larsen et al., 1994):
1. Construct a suitable null hypothesis;
2. Calculate-value;

_ME-x% o
b

where,ME is the reported main effect asdtands for the standard deviation of datés the number
of effect data and,represents the assumed average value according toypothesis, which is equal
to zero in this case.

t

3. Calculate the P-value by studélistribution;

4. Accept or reject the null hypothesis based amlRe. If the null hypothesis is rejected, altenret
one is accepted.

The critical value which is the criterion for actieg or rejecting the null hypothesis is called
significance level. If the P-value falls below thignificance level, the null hypothesis is rejected
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Conversely, the null hypothesis is accepted wherPtivalue becomes greater than significance level.
The most popular values for this level are 5% a¥d(Moradi et al., 2010). The calculated P-values
for the screening parameters are shown in Table 5.

Table5
Effect data set for screening parameters
Factor Main Effect ~ Variance  P-Value (%) Effect Data
{6.18, 1.83, 2.25, 4.83, -9.88, 0.22, 4.62, 6.37,
h 5.06 36.19 0.43 10.67, 18.6, -0.32, 7.77, 6.89, 7.11, 8.35, 5.85}
{10.49, 11.96, 6.97, 14.59, 0.4, 3.58, 22.75, 6.7,
K 12.64 44.14 1.6x10* 11.19, 17.24, 13.07, 15.61, 20.15, 22.41, 17.81,
8.1}
{-5.68, -10.89, -6.13, -12.14, -16.57, -14.19, -
Sue -7.66 34.75 0.01 8.74,-9.69, -1.53, -10.23, -3.81, 0.61, -4.43,
9.14, -7.17, -14.23}
{-2.33, 2.38, 1.39, -5.66, 9.81, 7.43, -0.17, -
Pet 0.9 34.75 54.89 1.12,-5.23,3.47,4.75, 9.18, -12.43, 4.13, 2.44,
-3.57}
{7.8, 2.05, 4.6, -1.91, 15.89, -0.45, 7.17, -0416,
A 3.25 254 2.1 2.37,-0.9, 5.15, -0.11, 5.56, -0.68, 0.79, 9.55}
{-3.06, -7.41, -1.38, -3.96, 10.75, 1.09, -4.63, -
Lo -4.19 36.19 1.39 2.88,-9.8, -17.73, -9.56, -1.47, -2.35, 2.13,
7.48, -4.99}
Resenvoir {12.03, 8.78, 13.49, 4.97, 7.67, 6.2, 3.83, 6.72,
) 10.12 25.4 8.2x10° 15.75, 14.67, 5.98, 11.32, 7.81, 22.76, 6.2,
dip 13.82}

2.5. Statistical analysis of interactions

Considerable variations in a set of effects mayetidence for two factor interactions. This occurs
when a parameter amplifies (or reduces) the e@ifeanother parameter. Interaction effects should be
taken into account since a factor may have a amailh effect but considerable interactions. Based on
sparsity of effects, it is assumed that the higitder interactions, compared to lower order ones, a
smaller and thus the higher order interactionsigmered (Moradi et al., 2010; NIST/SEMATECH,
2006).

Therefore, only two-factor interactions are diseasm this paper. Table 4 gives a set of 16 members
for the effect data of each parameter. The orthaligyrof the design guarantees that eight memblers o
any data set occur at the minimum level of anoff@ameter while the remaining eight members
occur at the maximum level of that parameter. Tddeutation of the interaction between thickndsgs (
andkyis shown using an example in Table 6. The minus eifginteraction between two parameters
means that increase in level of one parameter deesethe effect of another ones and vice versa.

Statistical inference can be employed again tordete the validity of interactions. In this caseet
null hypothesis assumes that the two subsets lm@vsame mean and the reported difference in their
averages is not statistically significant. The std-distribution is then used to calculate the P-value
of the null hypothesis. The procedure is quite sinto the one mentioned earlier but with different
and standard deviation terms (Larsen, and MarxgR0he last column in Table 6 reports the P-value
for the influence of horizontal permeability leva thickness effect for the above example. Since the
P-value is small (P-value< 5%), the null hypothesis be rejected.
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Table6
Effect of thickness on recovery factor at differbaels of horizontal permeability

Effect of h on recovery factor at different ky, Average Interaction P-value
k=500 6.18 183 225 4.83 -9.88 -0.22 4.62 6.37 1.99
k=35 10.67 186 -0.32 7.77 6.89 7.11 8.35 5.85 8.12

-3.06 3.66

Table 7 shows the values of interactions and tbeiresponding P-values for the other influential
parameters.

Table7
Evaluation and statistical analysis of interactions
Parameters Interaction P-value Parameters Interaction P-value
k, - h -3.06 3.66 A - S, -2.32 11.92
S.~-h -1.42 36.26 Mo = Sye 2.61 7.5
P, - h -0.09 95.47 Dip - S,. -1.83 22.81
A-=h 1.46 34.89 k, - P, 0.56 71.7
Dip - h -0.75 63.56 A - Py, 1.13 46.53
h - k, -3.06 6.58 P, -1 1.13 39.14
P, - k, 0.56 74.79 k, — L, 2.75 6.45
A -k, -0.11 94.81 Dip - 4, 1.46 34.89
Mo — K, 2.75 9.81 k, —» Dip -2.16 9.1
Dip - k, -2.16 20.24 S.c —» Dip -1.83 15.29
h- S, -2.32 35.37 M, — Dip 1.55 22.41
ki, - S. -2.86 5.13

2.6. Statistical modd

Determining the most dominant parameters is impotia construct the mathematical models for the

estimation of recovery factors without the expeofeéoing simulation. The selection of appropriate

parameters for the recovery factor correlation t®@mon problem which can be solved by means of
statistical analyses. Statistical analyses showfitheof the introduced parameters are more ingurt

in the nitrogen injection process. Based on thectitfe parameters and 32 recovery factors which are
calculated by the simulator software, four models be proposed for estimating the recovery factor
of the nitrogen injection process. These modelsadntained using various methods including: (a)

linear model, (b) Pure Quadratic model, (c) Intdosc model, and (d) Quadratic model. These

methods are based on the general equation giveawk@®ox et al., 2005; Chu, 1990; Larsen et al.,

1994):

F(X)=tb+ib>.<+ihxjx+iibﬁ (®)

i<j
The expression includes an independent téxn l{near termsx;), two-factor interaction terms;),

quadratic terms)(z), and their respective parameters of the regresamdel b;, b;, andb;).

There are two statistic criteria to compare the ef®dumerically. These criteria include mean square
error (MSE) and correlation coefficienR%j. Any model with the values df close to 1 and a
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minimum mean square error introduces the best model

3. Results and discussion

In the previous section, a methodology was develojge screen the parameters involved in the
nitrogen injection process based on statisticararice. One may select 5% as the significant fevel
screening analyses. According to Table 4, the petens most affecting the recovery factor in the
nitrogen injection process include horizontal peahility, reservoir dip, connate water saturation,
reservoir thickness, oil viscosity, and pore siiribution, the corresponding P-values of which ar
less than 5%. Accordingly, these parameters maycdiesidered as the most important factors
controlling the mechanism of the nitrogen injectppncess. Threshold capillary pressure has a minor
effect on recovery factor and also correspondsRevalue much greater than 5%. In this case, the nu
hypothesis is accepted, which means that this patearhas no significant effect on oil recovery éact

as long as it ranges from 0.75 to 2 psi. Tables® ahows that this parameter does not have any
considerable interactions with the other paramet@nerefore, this parameter can be ignored with no
considerable errors. Furthermore, the main effettsonnate water saturation and oil viscosity are
negative; this denotes that increasing these twtoifa respectively from 0.1 to 0.4 and from 0.74 to
3.1 reduces recovery factor to 7.66 and 4.19 cpomdingly.

Table 7 shows the values of interactions and thespective P-values for the parameters. The
interactions may have either a significant or ingigant impact on recovery factor, depending on
both interaction values and corresponding P-valiesording to Table 7, the interactionlgfhis the
most important one among the others; this intevacis negative. It means that although a reservoir
with higher horizontal permeability is possibly atter candidate for nitrogen gas injection, the
interactions of reservoir thickness with horizomtakmeability may challenge this rule. The terms of
Kn-Swer Lo-Swe @andkq-1p have P-values somewhat greater than 5%, but thigiraiction values can be
accepted with a little caution. The rest of theeiattions have corresponding P-values greater than
5%; hence, these terms are not useful and the&ictsfbn recovery factor are insignificant.

Comparison of the MSE ari values of the four models in Table 8 shows thatkfst model is
interaction model which is in good agreement whh tesults of the simulation runs. This model
consists of one constant term, five linear terms] 40 two-factor interaction terms, which are
depicted in a tabulated form in Table 9.

Table8
Summary of MSE ané? values for the four models
o M odels
Gas Criteria - - - :
Linear Pure Quadratic Quadratic Interaction
N M SE 22.01 81.23 40.79 12.65
2

R? 0.84 0.51 0.87 0.94
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Table9
Correlation coefficients for the interaction model
Terms Coefficients Terms Coefficients
Constant 44.79 hx p, 0.001
h 0.012 hx Dip -5.212x1075
K 0.043 K, X S, -0.041
Sue -14.058 K, X i, 0.005
Lo -6.513 k., x Dip -2.6x107*
Dip 0.411 Sue X My 7.373
hx K, -1.61x107° S.c x Dip -0.349
hx S, -0.012 M, * Dip 0.035

4. Conclusions

1. The main effects of the rock and fluid propertidsseven reservoirs on the performance of
nitrogen injection process were investigated byhgishe combination of experimental design
techniques and reservoir simulations.

2. The analysis of the main effects by hypothesisirtgstevealed that horizontal permeability,
reservoir dip, connate water saturation, resemiikness, oil viscosity, and pore size distribatio
parameters have the most effective impact on regoiaetor respectively. Threshold capillary
pressure has a minor effect on recovery factor.

3. The interaction of the parameters should also besidered in the field screening and
mathematical modeling. The results of the staastenalysis showed thd-h has the most
influential impact on recovery factor in the nitesginjection process.

4. The interaction model is the best method whichlmamised to quickly obtain the performance of
nitrogen injection processes in terms of recovantdr in conventional reservoirs.
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Nomenclature

EOS : Equation of state

GOR : Gas oil ratio (scf/sth)

h : Thickness (ft)

kq : Absolute horizontal permeability (mD)
k, : Vertical permeability (mD)

MSE : Mean square error

Py : Bubble point pressure (psi)

P : Threshold capillary pressure (psi)
Q : Rate of production (STB/D)

R : Coefficient correlation

S : Standard deviation

Sic : Critical gas saturation

Sic : Connate water saturation

A : Pore Size distribution parameter
Mo : Qil viscosity (cP)




A. Fereidooni et al. / Prediction of Nitrogen Infem Performance ... 53

References

Adepoju, O., Olufemi, O., and Djuro, N., ImproviRgoduction Forecasts through the Application of
Design of Experiments and Probabilistic AnalysisCAse Study from Chevron, Nigeria, SPE
128605, 33rd Annual SPE International Technicalf€mnce and Exhibition, Abuja, Nigeria, 3-
5 August, 2009.

Alkafeef, S. J., and Zaid, A. Z., Review of and IBak for Enhanced Oil Recovery Techniques in
Kuwait Oil Reservoirs, IPTC 11234, InternationaktrBum Technology Conference (IPTC),
Dubai, U.A.E., 4-6 December, 2007.

Alvarado, V., Selection of EOR/IOR OpportunitiessBd on Machine Learning, SPE 78332, SPE
European Petroleum Conference, Aberdeen, 29-31b@cta002.

Amudo, C., Graf, T., Dandekar, R., and Randle, J.TMe Pains and Gains of Experimental Design
and Response Surface Applications in Reservoir Rition Studies, SPE 118709, presented at
the 2009 SPE Reservoir Simulation Symposium, ThedMmals, Texas, 2-4 February, 2009.

Bailey, R. E., Enhanced Oil Recovery, NPC, Indugtdvisory Committee to the US Secretary of
Energy, Washington DC. USA, 1984.

Box, G. E. P., Hunter, W. G., and Hunter, S. J.tiStes for Experimenters, John Wiley & Sons Inc.,
New York, NY, 1987.

Chu, C., Prediction of Steam-flood Performance inaWe Oil Reservoirs Using Correlations
Developed by Factorial Design Methods, SPE 20020, SRHEornia Regional Meeting,
Ventura, CA, 4-6 April, 1990.

Corey, A. T., 1954, The Interrelation between Gas @il Relative Permeabilities, Prod. Mon., V. 19
No. 1, p. 38-41, 1954,

Damsleth, E., Hage, A., and Holden, L., Maximunohnfiation at Minimum Cost-A North Sea Field
Development Study with an Experimental Design, SPE393 Journal of Petroleum
Technology, V. 44, No. 12, p. 1350-1356, 1992.

Egeland, T., Hatlebakk, E., Holden, L., and LardenA., Designing Better Decisions, SPE 24275,
SPE European Petroleum Computer Conference, Stanadgrway, 25-27 May, 1992.

Eide, A. L., L. Holden, E. Reiso, and Aanononsen Aitomatic History Matching by Use of
Response Surfaces and Experimental Design, Eurdpeaference on the Mathematics of QOil
Recovery, Roros, Norway, 7-10 June, 1994.

Hahn, B. and Yalentine, D., Essential MATLAB for dineers and Scientists, Third Edition,
Published by Elsevier Ltd, 2007.

Haynes, H. J., Enhanced Oil Recovery, NationaldRaim Council, Industry Advisory Council to the
US Dept. of the Interior, Washington DC, USA, 1976.

Hinkelmann, K. and Kempthorne, O., Design and Asiglyof Experiments. Vol. 1, Second edition,
John Wiley & Sons Inc. Hoboken, New Jersey, 2008.

Larsen, E. A., Kristoffersen, S., and Egeland, Hunctional Integration in Design and Use of a
Computer-Based System for Design of Statistical, SREogean Petroleum Computer
Conference, Aberdeen, Scotland, 15-17 March, 1994.

Larsen, R. J. and Marx, M. L., An Introduction tatflematical Statistics and its Applications, Fourth
Edition, Pearson Prentice Hall, New Jersey, NJ6200

Lazic, Z. R, Design of Experiments in Chemical Ewgring, Wiley-VCH Verlag GmbH & Co.
KGaA, Weinheim, 2004.

Li, B. and Friedmann, F., Novel Multiple Resolutioesign of Experiment/ Response Surface
Methodology for Uncertainty Analysis of Reservoimfbiation Forecasts, SPE 92853, SPE
Reservoir Simulation Symposium, Houston, Texas]&@1iuary-2 February, 2005.



54 Iranian Journal of Oil & Gas Science and Techngldgol. 1 (2012), No. 1

Liu, B., Dessenberger, R., McMillen, K., Lach, dnd Kelkar, M., Water-Flooding Incremental Oil
Recovery Study in Middle Miocene to Paleocene Redex, Deep-Water Gulf of Mexico, SPE
Asia Pacific Oil & Gas Conference and Exhibitioerth, Australia, 20-22 October, 2008.

Manrique, E. J. and Pereira, C. A., Identifying M&EOR Thermal Processes in Canadian Tar Sands,
Petroleum Society’s 8th Canadian International dketim Conference (58th Annual Technical
Meeting), Calgary, Alberta, Canada, 12-14 June7200

Manrique, E. J., Muci, V. E., Gurfinkel, M. E., EGReld Experiences in Carbonate Reservoirs in the
United States, SPE Reservoir Evaluation & Engimegjournal, Dec. 2007.

Montgomery, D. C., Design and Analysis of Experitsefifth Edition, John Wiley & Sons Inc., New
York, 2001.

Moradi, S., Ganjeh Ghazvini, M., Dabir, B., and Einav. A., Statistical Inference Approach for
Identification of Dominant Parameters in Immiscibligrogen Injection, Energy Sources-Part A,
Recovery, Utilization and Environmental Effects,cBmber, 2010.

NIST/SEMATECH e-Handbook of Statistical Methods, waitl. nist.gov/div898/hand-book, 2006.

Prada, J. W. V., Cunha, J. C., and Cunha, L. Bceldainty Assessment Using Experimental Design
and Risk Analysis Techniques, Applied to Offshoreakdy-Oil Recovery, SPE International
Thermal Operations and Heavy Oil Symposium, Calgaltyerta, Canada, 1-3 November, 2005.

Taber, J. J. and Martin, F. D., Technical Screei@uides for the Enhanced Recovery of Oil, SPE
12069, 58th Annual Technical Conference and Exbibibf SPE of AIME, San Francisco, CA,
5-8 October, 1983.

Taber, J. J., Martin, F. D., Seright, R. S., EOR &uirgy Criteria Revisited- Parts 1 and 2, SPE
Reservoir Evaluation and Engineering, August, 1997.

Vanegas Prada, J. W. and Cunha, L. B., PredictioBA5D Performance Using Response Surface
Correlations Developed by Experimental Design Tépines: Journal of Canadian Petroleum
Technology, V. 47, No. 9, pp. 58-64, 2008.

White, C. D. and Royer, S. A., Experimental Desggna Framework for Reservoir Studies, SPE
79676, SPE Reservoir Simulation Symposium, Housteras, 3-5 February, 2003.

Wonnacott, T. H. and Wonnacott, R. J., IntroductBtgtistics, John Wiley & Sons Inc., New York,
1969.



