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Abstract

The main purpose of this paper is to estimate and evaluate the petrophysical properties of the Ghar
Formation in the Hindijan and Bahregansar oilfields using a combination of seismic and well logs
data. In this study, following a step-by-step regression approach: first; sonic, density, and, porosity
well-log data are collected. Second; seismic attributes, including amplitude, phase, frequency, and
acoustic impedance are extracted from the seismic lines intersecting the wellbore locations. Then,
using the MFLN and PNN intelligent systems, a relationship between porosity, shale volume,
saturation, and seismic attributes is established. Using this relationship, the physical and
petrophysical properties of the reservoir in the Ghar Formation are estimated and evaluated. We
estimated the reservoir porosity between 15% and 20%, which is higher in the Hendijan oilfield as
compared to the Bahregansar oilfield. The amount of water saturation in the Ghar formation varies
between 25 and 30 percent. On the other hand, the amount of clay content and shale volume of the
Ghar Formation in the Hendijan field is higher than that of the Bahregansar oil field.
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1. Introduction

The Middle East hosts the world's thickest oil and gas reserves, most of which are placed on the Arabian
Plate (Sharland et al. 2001). The thick accumulation of Cretaceous-age sediments in the Arabian Plate
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and the Zagros basin contains extremely massive and important hydrocarbon reserves (Setudehnia
1978; Alsharhan and Nairn 1986; Ghobeishavi et al. 2009 2010; Hollis 2011; Lapponi et al., 2011)
Misharif reservoir of the Cretaceous (Early Cenomanian-Turonian) is one of the most important
hydrocarbon reservoirs in the South Pars Oil Field. Identifying the reservoir properties of the reservoir
rock is one of the important factors in petroleum reservoir studies. Reservoir mapping is one of the most
important steps in the evaluation and development of oilfields (Rastegarnia and Khadkhodaie, 2013).
Today, due to the limitations in determining reservoir characteristics from wells, the use of indirect
methods like high-level seismic data has become increasingly important in the estimation and
evaluation of reservoir characteristics and appears to be an important factor in reducing the risk of
drilling new wells. Seismic markers are mathematical functions derived from seismic information
extracted from seismic data in the time and frequency domain. This basic information includes time,
amplitude, frequency, and absorption, and these basic properties make it possible to classify the
markers. Recent studies show that time-derived markers contain structural information and domain-
derived markers include stratigraphic and reservoir information. Frequency-derived markers contain
information on the properties of the reservoir. Energy absorption is another indicator that can provide
information on fluidity and permeability (Brown, 2001). The importance of seismic drifting is due to
the use of various data such as seismic information and well log data and geological information
combined to enhance the resolution and accuracy of the reservoir model. In this study, a combination
of 2D seismic data, well-log interpretive information like sonic, Gamma-ray, neuron data, and
interpretive geological information related to the Ghar Formation in the Iranian oilfields of Hendijan
and Bahregansar in the South Pars (Figure 1), as a model-based seismic inversion assay, was performed.
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Figure 1
The location map of the Hendijan and Baheregansar oilfield (NIOC report).

The main purpose of seismic inversion in the studied oilfields is its national importance in modeling
the South Pars basin. The strategic location of the South Pars and its oilfields has led to various studies
and results. Many researchers including (Guning et al, 2007; Kadkhodaie-Ilkhchi et al., 2009;
Yarmohamadi et al, 2014; Lang et al, 2017; Faraji et al, 2017; Maurya et al, 2017, 2018; Xu et al, 2019;
Shiri and Falahat, 2019; Abdulaziz et al, 2019; Abdulaziz, 2020; Abdel-Fatah et al, 2020) used well
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logs and seismic attributes to predict the petrophysical parameters of hydrocarbon reservoirs. In general,
the workflow chart illustrates the steps involved in the present study displayed in Figure 2.

Well Log data lr Seismic Data ]
v \
: Wavelet Extraction Seismic processing
Create Synthetiv
v
A 4 s ; — o
Pick Seicmic
[ Strech/Squeez Log ] A
L 4
Build Model
\ 4
Inversion ]

Figure 2

The workflow illustrates the steps involved in the seismic inversion process.

2. Geology of the area

The Hendijan and Bahregansar hydrocarbon fields are located northwest of the South Pars. Bahregansar
Field is located 10 kilometers southeast of Hendijan Field and 56 kilometers from Bahregansar Oil
Center. The geographical location of these fields is shown in Figure (2). The archipelago of Hindijan
and Bahregansar fields contains eight independent tanks. Depending on the depth increase they are
located in Ahvaz sandstone (gas Ghar), Ahvaz sandstone (oil Ghar) section of the Asmari a Formation,
Asmari B, Sarvak, Kazhdomi (Naramer) gas, Fahliyan oilfield (Yamaha). Ten wells have been drilled
in Bahregansar Field and five wells in Hendijan Field. The oil from the wells of Hendijan and
Bahregansar Field was subdivided into two geographical units: sour oil (Hendijan field and Sarvak
Behregansar field) and sweet oil (Ghar oil and Asmari Formation of Bahregansar field) and the resulting
oil are transported to the Bahregansar oil Center onshore after mixing with a marine pipeline. Ahvaz
sandstone section of the Asmari Formation in the Bahregansar and Hendijan oil field contains fine to
medium-grained sandstones and Shaly thin strata (Figure 3). The source of this sandstone is from the
west to the southwest of the South Pars. This sandstone extension in southwest Iran is seen as a fan and
decreases from the source to the end of the sand. The average thickness of this section is about 89 meters
in Bahregansar and Hendijan hydrocarbon fields. In the BS-10 well, the thickness of this sandstone is
94 meters, which is the maximum thickness of the sandstone in the field. (Geological Reports of
Hendijan and Bahregansar Fields Offshore Oil Company).
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Figure 3

General stratigraphic column in the South Pars (Ziegler, 2001). The red numbers indicate Tectonostratigraphic
Megasequences.

3. Methodology

In this study, petrophysical data along with seismic data were used to determine the reservoir
parameters. Sonic, neutron, density, and gamma logs were used for petrophysics evaluation in the two
different hydrocarbon reservoir fields. First, the time-depth relationship of sonic logs was corrected
with the help of velocity information. Next, a synthetic seismogram was made with the help of a wavelet
extracted from seismic information with a zero-phase wavelet. After comparison with adjacent
vibration, a correlation was made between synthetic seismogram and real seismic data. The seismic
data were then analyzed by the seismic inversion method (Russell 1988; Russell and Hampson 2006),
which is described in detail below. In this research, rock physics studies have been used to reduce the
effect of drilling fluids as well as wellbore wall collapse using petrophysical, sonic and density corrected
logs. For this purpose, a hybrid model proposed by White (1991) was used, which is a numerical model
based on the Custer and Toxose (1974) model. This model could establish the relationship between the
elastic properties of rock structure, minerals, porosity, and percentage of clay (Sharifi et al, 2016; Sherif
2002).
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4. Data description
4.1. Petrophysical evaluation

The petrophysical study of Bahregansar and Hendijan hydrocarbon fields was studied by collecting all
the information of the existing well log and thoroughly examining them for two wells. In each
hydrocarbon field, 4 to 6 wells are drilled at different locations. In most wells, the full set logs are not
driven. Therefore, according to the need, the caliper log is used as a controlling tool for the wellbore
diameter. After selecting the initial logs, the specified reservoir ranges from them, and petrophysical
data were pre-processed. The results are finally obtained by combining well log data, core information,
and production log information. Ahvaz sandstone (Ghar or Asmari sandstone) in this field consists of
three layers separated by layers of shale. The upper two layers have very high porosity and contain
condensate-rich intervals. The gas and water contact surface as shown in Figure 4 is about 2042 meters
below sea level. The lower layer from 2042 meters contains petroleum and although it has good
petrophysical properties from a reservoir point of view, it is of lower quality than the upper layers
(Figures 4 and 5).
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Figure 4

Interpreted results of Bahregansar Well #1 (shale volume, porosity, and water saturation).
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Well logs were obtained from the Hendijan well #1 (shale volume, porosity, and water saturation).
4.2. Seismic inversion

The purpose of seismic inversion is to estimate the acoustic impedance to better evaluate the reservoir
for lithology, porosity, and reservoir fluid nature and to predict proper locations for subsequent drilling.
Inversion is also one of the prerequisites for preparing information to predict and estimate important
reservoir petrophysical properties, such as porosity and saturation.

4.2.1. Input information

The data used as input in the seismic inversion algorithm included seismic line No. 7059 shown in
Figure 6. Also, two wells were added in the inversion process as control points. These wells included
sonic logs, drainage, effective saturation, effective porosity, gamma log, and shale volume. Interpreted
horizons were introduced in the seismic stacked section through the inversion process. Thus, the initial
information for inversion was efficient.
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Figure 6
Correlation between real seismic data with well logs and synthetic seismogram for Bahregansar well #1.

The next step was to correct and correlate the well-logs with the check shots (Figures 7 and 8). As
mentioned, prior to the preliminary interpretation, all wells had been analyzed to ensure that geological
markers were correlated with the actual seismic reflectors. In this way, synthetic seismic was generated
and correlated with a seismic section, to be used in the inversion process. Thus, the well-logs are
transformed from the depth scale to the time scale and are overlaid on the seismic section.
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Correlation between synthetic seismogram and check shot for the Bahergaran Wellbore #1.
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Correlation between synthetic seismogram and check shot for the Handijan Wellbore #1.
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4.2.2. Wavelet extraction

After converting the well-logs scale from depth to time, it is time to extract a seismic wavelet using the
match between the well-logs and the seismic section. Seismic wavelets can be extracted in three ways
including statistical method, using the seismic stacked section, and well logs. As mentioned above,
seismic operations were carried out in the field of the Hendijan hydrocarbon field using a gas gun
source, so it can be expected that a similar wavelet to that produced by a gas gun could be obtained and
the results obtained would be more reliable.
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Figure 9
Shows a seismic wavelet that is statistically extracted from real seismic data.

Figure 10, shows a seismic wavelet that is statistically extracted from real seismic data. The center
frequency of this wavelet is 35 Hz and its propagation length is 100 msec. This wavelet is a zero-phase
wavelet.
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Figure 10

Statistical wavelet extracted from real seismic data in the time domain.
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The second wavelet extracted based on real seismic data and well logs was used in the seismic inversion
process. Figure 11 shows a wavelet extracted at the wellbore location using real seismic data and well

logs. To obtain and extract this wavelet, a synthetic seismogram based on the sonic log and wavelet
extracted from the real seismic was performed.

o

5510|5251t | 011708 | o400 vt et | ez e | ved. Bt s 1 | et

S AT TE2pense
BEP= 0 107 RviE- 0251

e 48570 1
Ampituce

T, Anueree Sl

35 0 ss s s &0 .48 40 s o 25 20 45 a0 5 0 5 10 45 @ 25 W 35 40 45 & s 60 65 70

Figure 11
A seismic wavelet extracted from the well-log correlated with the seismic stacked section.

The final wavelet was a wavelet made from the combination of the first wavelet and the second wavelet.
Figure 12 shows the wavelets obtained with respect to the method of the time and frequency domain.
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Figure 12

Shows the wavelets obtained with respect to the method of the time and frequency domain.
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Wavelet extraction, the phase of wavelet that was performed from seismic and well logs was shifted to
-40 degrees and used as the final wavelet with a correlation coefficient of 70%. Then, the inversion
process was performed.

4.3. Seismic inversion process

Seismic data inversion on post-transposed data is a step in which we analyze the seismic section and
attempt to construct an acoustic impedance model close to the actual ground model. The seismic
inversion process is performed after we could construct the initial and homogeneous model. The
methods selected for the seismic inversion algorithm were model-based and spars spike methods. The
model-based inversion was first introduced by Cook and Schneider (1983). The basis of this method is
based on the behavior of the earth layer in the form of acoustic impedance blocks. In this method, first,
an initial model of acoustic impedance contrast is prepared from well-logs (density and sonic logs) and
then using Generalized Linear Inversion. Iteration in the inversion process was performed to minimize
the difference between the initial model and the seismic section. The mathematical function for
achieving the least desired difference (J) is as follows:

J=Weightlx (T-W*RC) +Weight1x (M-H*RC) (1)

To achieve the final acoustic impedance the above relation was used. In the above relation, T is the
synthetic seismogram, RC is the reflection coefficients, M is an estimation of the initial acoustic
impedance model, W is wavelength amplitude and H is the degree of integration of the final reflection
coefficients. This method is more sensitive to the original wavelet model than recursive methods
(Geohorazone, 2002) and unlike sparse spike methods; information about reflection coefficients is not
directly obtained from the seismic section therefore this method is not sensitive to the original wavelet
model. One of the most important variable parameters in this method is the number of iterations of the
acoustic impedance block (Russell, 1988; 2004). One of the disadvantages of the model-based inversion
method is highly sensitive to the wavelet noise and its main advantages are its complete solution of the
equation, the identification of errors during problem-solving, and the modeling of reflections.

In the sparse spike inversion method, events are calculated only where seismic information exists. This
method produces the simplest model that contains information and details, and often low-frequency
events are retrieved using geologic seismic information. This method is less dependent on the original
model (Hampson, 2000).

In this method, the sequence of reflections is performed at one time as a spike, and the rest of the
reflections are made step by step in the same order, and then the spiked are assembled in a time series
and the model is designed. The seismic frequency domain is performed as follows:

x(w)= R(w)w(w)+ N(w) ()

Here x (w) is synthetic seismogram, R (w) are reflection coefficient series, W (w) are seismic
wavewavelets N (w) is noise, and w frequency. While a series of reflection coefficients are obtained,
the acoustic impedance of each layer is calculated using the following relation:

3)

The solution seems to be to divide the synthetic seismogram's spectrum into the wavelet spectrum and
obtain the resulting Fourier transform, including the disadvantages of the sparse spike method, which
is to reduce the detail in the final output because only the block components in it are inverted. The
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advantages of this method include the observational data in the calculations and the low-frequency
information will be solved through its related equations. Finally, between these two methods, the sparse
spike inversion method with a higher correlation coefficient of the selected data is used in the next step.

4.4. Investigation of the results from multiple attributes and reservoir studies

Standard seismic attributes were used as inputs to evaluate reservoir petrophysical properties including
porosity, water saturation, and shale volume. Using a step-by-step regression approach, these input
seismic attributes are combined and several composite attributes that are more sensitive to the reservoir
properties are finally selected. To obtain each reservoir’s petrophysical properties, these composite
attributes were synthesized in the neural network algorithm. Table 1 shows the composition of different
attributes and their correlation coefficients to the estimated porosity. Then, the correlation between the
wellbore porosity and the estimated reservoir porosity was performed. Based on the results, we could
select attributes that have a lower error percentage than the reservoir porosity. Then neural network
system to obtain the desired petrophysical properties was performed, and finally, a cross-plot of the
desired petrophysical properties along the seismic section is depicted.

4.4.1. Seismic attributes selection

Petrophysical properties prediction is achieved by integrating the interpreted petrophysical properties
from obtained result analysis with both internal and external seismic attributes using a probabilistic
neural network (PNN). The probabilistic neural network algorithm is a multilayered feedforward neural
network derived from the integration of the Bayesian network with Fisher discriminant analysis. This
algorithm is used in pattern recognition and dataset classification problems (Mohebali et al., 2020; Mao
et al.,, 2000; Berthold and Diamond, 1998). The manual and computer-aided PNN algorithms are
evaluated over numerous trainings to determine the optimum number of attributes. This investigation
uses seismic attributes to find the relation between the petrophysical properties and seismic attributes.
In this section of this investigation, the relation between seismic attributes and petrophysical properties
was investigated through the application of simple regression analyses (Kadkhodaie-Ilkhchi et al.,
2009). Regression analysis is a practical method that is used to analyze the relationship between one
dependent variable and several independent variables (Hampson et al., 2001; Mohebali et al., 2020). A
simple regression analysis was used to find the relationship between the seismic attributes and
petrophysical properties. The obtained results from the regression analyses between the seismic
attributes and petrophysical properties are shown in Figures 13 and 14. Figure 13 displays four cross
plots between seismic attributes and water saturation with different correlation coefficients. Figure 14
displays seven cross plots between seismic attributes and porosity with different correlation
coefficients. The amount of correlation coefficient values shown for each cross plot indicates the
amount of the relationship between each seismic attribute with the related petrophysical properties.
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This study uses two approaches to data analysis. The first approach is water saturation analysis versus

four seismic attributes, and the second approach is porosity analysis versus seven seismic attributes.
The first approach is four attributes including time, average frequency, filter 15/20-25/30, and dominant
frequency, and it can be considered for water saturation prediction. The relations between the water
saturation and seismic attributes were shown in the cross-plot chart. Overall, the obtained result of
seismic attribute analysis shows the different trends with water saturation including direct and reverse.
The reservoir section due to the oil saturation decreases toward oil-water contact. Therefore, water
saturation increases as depth increase across the hydrocarbon interval. The average frequency value is
a signature of the geological feature and effects of the abnormal attenuation due to the effect of the
hydrocarbon’s media (Taner et al., 1994).
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Porosity (%)

Cross-plots display relationships between seismic attributes and porosity.
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The seismic filter 15/20-25/30 attribute is a dominant frequency filter and these attributes can be
reflected in dominant frequency. As with the average frequency, the dominant frequency could be
indicating abnormal frequency value attenuation. The obtained result of the seismic attribute analysis
with porosity shows the different variations. Acoustic impedance value is a harvest of the velocity and
density. The velocity and density have a good relation with porosity value and show the inverse relation.
Integrate attribute is the sum of the amplitudes within the studied interval. Generally, this attribute is an
indicator of an amplitude anomaly due to changes in the sedimentary facies. Quadrature trace attribute
is evaluated from seismic trace analysis. Vertical variations of instantaneous phase reflect variations of
the sedimentary facies. The instantaneous phase attribute is derived from the instantaneous phase. This
attribute its fixed limitation value (1 to +1) is easier to understand, it can better identify variations in
porosity and lithology. The amplitude envelope attribute is an indicator of the major sedimentary facies
changes, and the same as the water saturation obtained, the dominate filter 15/20-25/30 can indicate
porosity changes due to amplitude variations. Finally, the obtained result from the PNN algorithm with
the best correlation at the evaluated wells is accepted as a petrophysical model capable of porosity and
water saturation prediction of seismic data attributes.

4.4.2. Porosity evaluation

Standard seismic attributes were used as inputs to evaluate the porosity property. Using a step-by-step
regression approach, these input attributes are combined and several composite attributes that are more
sensitive to porosity properties are finally selected. To calculate the porosity of several composite
attributes was performed in the previous step, then the neural network algorithm was implemented.
Table 1 shows the combination of different attributes and their correlation coefficient of selected
porosity properties. Table 2 shows the correlation between the well-log and the estimated porosity.
Depending on the attitude of the selected attributes, the error value is reduced and the best combination
of attributes is obtained in Table 2, for the ten bottom attributes.
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Table 1

Composition of implemented attributes together with their correlation coefficient with the porosity parameter.

Attribute 1 Attribute 11 Correlation
coefficient
1 Raw seismic Amplitude Weighted Cosine Phase 0.999935
2 Amplitude Envelop Amplitude Weighted Frequency 0.98802
3 Average Frequency Time -0.98531
4 Average Frequency dominate Frequency 0.984092
5 dominate Frequency Time -0.983376
6 Derivative Quadrature Trace -0.979774
7 Integrate Quadrature Trace 0.968323
8 Amplitude Weighted Frequency Integrated Absolute Amplitude 0.944861
9 Apparent Polarity Time 0.938549
10 Raw seismic Second Derivative -0.936087
11 Amplitude Weighted Cosine Phase Second Derivative -0.935622
12 Amplitude Envelop Integrated Absolute Amplitude 0.935109
13 Amplitude Weighted Frequency Apparent Polarity -0.908969
14 Amplitude Envelop Apparent Polarity -0.904966
15 Derivative Integrate -0.902692
16 Apparent Polarity dominate Frequency -0.897598
17 Average Frequency Apparent Polarity -0.893726
18 Amplitude Weighted Frequency Time -0.871787
19 Filter 35/40-45/50 Second Derivative -0.86149
20 Amplitude Weighted Phase Quadrature Trace 0.853539
21 Amplitude Weighted Phase Integrate 0.848328
22 Amplitude Weighted Frequency dominate Frequency 0.843297
23 Amplitude Weighted Cosine Phase Cosine Instantaneous Phase 0.820266
24 Amplitude Envelop Time -0.819264
25 Raw seismic Cosine Instantaneous Phase 0.818071
26 Amplitude Weighted Phase Derivative -0.81333
27 Amplitude Polarity Integrated Absolute Amplitude -0.812943
28 Integrated Absolute Amplitude Time -0.800868
29 dominate Frequency Integrated Absolute Amplitude 0.792181
Table 2
Training error value of the used attributes related to porosity parameter.
Target Final Attribute Training error
1 porosity Derivative Instantaneous Amplitude 4.626667
2 porosity Amplitude Polarity 4.067448
3 porosity Time 3.484539
4 porosity Filter 45/50-55/60 3.276893
5 porosity Filter 55/60-65/70 3.128593
6 porosity Second Derivative Instantaneous Amplitude 3.056415
7 porosity Instantaneous phase 2.986613
8 porosity Integrate 2.841265
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9 porosity Derivative 2.78919
10 porosity instantaneous Frequency 2.701374
11 porosity Second Derivative 2.626165
12 porosity Amplitude Weighted phase 2.603198
13 porosity Dominant Frequency 2.563996
14 porosity Cosine Instantaneous Phase 2.3751
15 porosity Filter 35/40-45/50 2.348985
16 porosity Amplitude Weighted Frequency 2.341673
17  porosity Filter 5/10-15/20 2.205167
18  porosity Amplitude Weighted Cosine phase 2.159117
19 porosity Integrated Absolute Amplitude 2.143518
20  porosity Filter 15/20-25/30 2.123438
21 porosity Average Frequency 2.117774
22 porosity Filter 20/30-35/40 2.112364
23 porosity Raw Seismic 2.1105
24 porosity Quadrature Trace 2.109427
25 porosity Amplitude Envelope 2.113276

After we obtained attributes that were more sensitive to the porosity parameter, we introduced these
attributes into the neural network to estimate the porosity. In this study, due to the higher correlation
coefficients of PNN and MFLN neural Networks, these two methods were used and finally selected
they could produce the highest correlation value with the well-log’s porosity (Figures 15 and 16).
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Figure 15

Correlation between the porosity obtained from well logs and the result obtained from the PNN network.

In the above figure, the measured porosity log from well logging is shown in black and the predicted
porosity log obtained from the PNN is shown in red. The correlation coefficient between the porosity
logs is 89%.
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Figure 16

Correlation between the porosity obtained from well-logs and the result obtained from the MLFN network with
an 85% correlation coefficient.

Based on training data in the neural network system, and its application to seismic data, porosity values
across the seismic line were estimated throughout the region. Finally, by propagating the porosity results
obtained from the PNN neural network and applying them to the seismic section, it produced the
porosity distribution section across seismic line #7059 (Figure 17).
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Figure 17

Overlaying porosity log obtained in the wellbore on the porosity section obtained across seismic line #7059
using neural network method.
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As can be seen in Figure 17, the seismic horizons of the Ghar formation are divided into two separate
units by the Shaly layer in both hydrocarbon fields. Namely, both reservoir is divided into two upper
and lower parts of the Ghar Formation by a Shaly layer.

The amount of porosity obtained from seismic line #7059 is between 15% - 20%, which is higher in the
Hendijan field than in the Bahregansar hydrocarbon field. It should be noted that the porosity values
within the reservoir range (apex of the Ghar to apex of the Asmari horizon) are reliable at the well
location. It should be mentioned that the calculations and extraction of the attributes are implemented

within the working range of the repository.

4.4.3. Saturation evaluation

Several standard seismic attributes were used as inputs to evaluate water saturation as presented in Table

3.

Training error values of extracted attributes relative to water saturation.

Table 3

Target Final Attribute Training error
1 Sqrt (Water Saturation) Filter 15/20-25/30 17.775746
2 Sqrt (Water Saturation) Time 17.149495
3 Sqrt (Water Saturation) Derivative 16.738882
4 Sqrt (Water Saturation) Dominant Frequency 15.683496
5 Sqrt (Water Saturation) Derivative Instantaneous Amplitude 14.824009
6 Sqrt (Water Saturation) Filter 5/10-15/20 14.459009
7 Sqrt (Water Saturation) Integrated Absolute Amplitude 13.631616
8 Sqrt (Water Saturation) Amplitude Envelope 13.313927
9 Sqrt (Water Saturation) Filter 25/30-35/40 12.780081
10 Sqrt (Water Saturation) 1/(Model Base) 12.643559
11 Sqrt (Water Saturation) log(Band Limited) 12.509869
12 Sqrt (Water Saturation) 1/(LP-Spars Spike) 12.411149
13 Sqrt (Water Saturation) Average Frequency 12.252408
14 Sqrt (Water Saturation) Quadrature Trace 11.927377
15 Sqrt (Water Saturation) Amplitude Weighted phase 11.813924
16 Sqrt (Water Saturation) Second Derivative 11.67328
17 Sqrt (Water Saturation) Raw Seismic 11.466588
18 Sqrt (Water Saturation) Instantaneous phase 11.361309
19 Sqrt (Water Saturation) Filter 55/60-65/70 11.297807
20 Sqrt (Water Saturation) Colored 11.245899
21 Sqrt (Water Saturation) Amplitude Weighted Cosine phase 11.21087
22 Sqrt (Water Saturation) Cosine Instantaneous Phase 11.192933
23 Sqrt (Water Saturation) Filter 45/50-55/60 11.154887
24 Sqrt (Water Saturation) Filter 35/40-45/50 11.129155
25 Sqrt (Water Saturation) Apparent Polarity 11.107884
26 Sqrt (Water Saturation) Integrate 11.098634
27 Sqrt (Water Saturation) Second Derivative Instantaneous phase 11.090051
28 Sqrt (Water Saturation) Instantaneous Frequency 11.040899
29 Sqrt (Water Saturation) Amplitude Weighted Frequency 11.040635
30 Sqrt (Water Saturation) 1/ (ML-Spars Spike) 11.069533
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The stepwise regression algorithm was combined with these input attributes and 15 composite attributes

were extracted, which are presented in Table 4.

Table 4

Composite attributes extracted to calculate water saturation.

Water Saturation

Log (Colored)

A WD

O 0 9 N W

10
11
12
13
14
15
16
17
18

Water Saturation
Water Saturation
Water Saturation
Water Saturation
Water Saturation
Water Saturation
Water Saturation
Water Saturation
Water Saturation
Water Saturation
Water Saturation
Water Saturation
Water Saturation
Water Saturation
Water Saturation
Water Saturation

Water Saturation

Amplitude Weighted Frequency
Instantaneous phase
Filter 35/40-45/50
Amplitude Envelope
(Neural Network) ~2
Apparent Polarity
Filter 5/10-15/20
Integrate
Derivative
Filter 25/30-35/40
Amplitude Weighted Cosine phase
Derivative Instantaneous Amplitude
Raw Seismic
Filter 45/50-55/60
Time
Cosine Instantaneous Phase

Quadrature Trace

To calculate the water saturation of these 18 composite attributes performed in the previous step, the
PNN neural network algorithm was applied. Figure 18 shows the water saturation correlation between
the well-logs from the Bahregansar Well #1 and the estimated porosity from the seismic section.
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Figure 18

Cross-plot between the values of water saturation log from the wellbore and the neural network results at the
Bahregansar Wellbore #1.

Based on training on the neural network and its application to seismic data, water saturation values
across the seismic line were estimated throughout the reservoir region. Figure 19 shows the water
saturation results obtained from the neural network.
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Figure 19

Overlaying the water saturation log (BS-1) on the estimated water saturation from the seismic section using a
neural network for the Ghar formation across seismic line # 7059.
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As can be seen in figure 19, the presence of a high-water saturation region indicates the presence of a
separating shale layer. The amount of water saturation is lower in the upper part of the reservoir. The
water saturation is obtained from 5% to 30% which is consistent with the well-log data in the wellbore
location. This correlation is due to the full coverage of seismic data in the wellbore location.

4.4.4. Evaluation of shale volume

The combination of available attributes was used to obtain the best correlation between them with
respect to the shale volume parameter. Tables 5 and 6 show which attribute is most sensitive to shale

volume.

Table 5

Combination coefficient of the different attributes in obtaining the best correlation between them with respect to
the shale volume parameter.

Attribute type 1 Attribute type 2 Correlation

1 Raw Seismic Amplitude Weighted Cosine Phase 0.999942
2 Amplitude Envelop Apparent Polarity -0.999335
3 Derivative Integrate -0.999166
4 Amplitude Weighted Frequency Integrated Absolute Amplitude 0.992784
5 Amplitude Envelop Amplitude Weighted Frequency 0.987768
] Amplitude Weighted Frequency Apparent Polarity -0.986246
7 Amplitude Envelop Integrated Absolute Amplitude 0.983406
g Apparent Polarity Integrated Absolute Amplitude -0.98183
9 Integrate Quadrature Trace 0.97864
10 Dernvative Quadrature Trace -0.9773
11 Raw Seismic Second Dertvative -0.930626
12 Amplitude Weighted Cosine Phase Second Derivative -0.930219
13 LP-Spars Spike Filter 5/10-15/20 0.898354
14 Filter 35/40-45/50 Second Derivative -0.892154
15 Amplitude Weighted Frequency Time -0.877295
16 LP-Spars Spike Band Limited 0.870646
17 Integrated Absolute Amplitude Time -0.868707
18 Amplitude Weighted Phase Quadrature Trace 0.849809
19 Amplitude Envelop Tume -0.823013
20 Amplitude Weighted Cosine Phase Cosine Instantaneous Phase 0.821894
21 Amplitude Weighted Phase Integrate 0.821698
22 Apparent Polarity Tume 0.820659
23 Raw Seismic Cosine Instantaneous Phase 0.8199
24 Amplitude Weighted Phase Dervative -0.813668
25 ML-Spars Spike Model Base 0.782669

Table 6
Shale volume correlation coefficient extracted from different attributes in the Hendijan and Bahergaran
hydrocarbon fields.
Type Attributes Correlation
1 Derivative Instantaneous Amplitude 4.601699
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2 1/ (Model Base) 4.017773
3 Filter 35/40-45/50 3.776103
4 Second Derivative 3.621082
5 (ML-Spars Spike) **2 3.471372
6 Filter 25/30-35/40 3.375977
7 Instantaneous Frequency 3.23231

8 Second Derivative Instantaneous Amplitude 3.167066
9 Quadrature Trace 2.9449

10 (Neural Network) **2 2.852324
11 Filter 25/30-35/40 2.79006

12 Instantaneous Frequency 2.696409
13 Instantaneous phase 2.634277
14 (Band Limited) **2 2.346846
15 Filter 45/50-55/60 2.321278
16 Dominant Frequency 2.312086
17 Amplitude Weighted Cosine phase 2.262963
18 Integrated Absolute Amplitude 2.252725
19 1/(Colored) 2.243289
20 Cosine Instantaneous Phase 2.229429
21 1/(LP-Spars Spike) 2.216842
22 Amplitude Weighted Frequency 2.207701
23 Raw Seismic 2.199784
24 Filter 15/20-25/30 2.192861
25 Apparent Polarity 2.188957
26 Filter 5/10-15/20 2.186027
27 Derivative 2.183813
28 Filter 55/60-65/70 2.182343
29 Average Frequency 2.182343
30 Integrated 2.182434
31 Amplitude Envelope 2.183126

Figures 20, and 21 show cross-plots of the results obtained from the MFLN neural network method and
well log at Bahregansar Well #1, respectively.

E‘.:.»m‘ 11,2008 151

Figure 20

Relationship between actual shale volume from well logging at Bahregansar Well #1 location and predicted values
using the MFLN neural network at the same wellbore with a correlation coefficient of 94%.
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Figure 21

Comparison between shale volume obtained from the well-log and the MFLN neural network predicted results at
the same wellbore with a correlation coefficient of 96%.

Figures 22, and 23 show cross-plots of the results obtained from the PNN neural network method and
well log at Bahregansar Well #1, respectively.
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Figure 22

Relationship between the actual amounts of shale volume obtained from the well-log and the predicted value using
the PNN neural network with a correlation coefficient of 92%.
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Figure 23

Shale volume log obtained from wellbore and shale volume log estimated from the PNN neural network at the
Bahregansar well#1 with 92% correlation coefficient.

Based on training data in the neural network system, and its application to seismic data, shale volume
across the seismic line was estimated throughout the region. Finally, by propagating the shale volume
results obtained from the PNN neural network and applying them to the seismic section, it produced the
shale volume distribution section across seismic line #7059 (Figure 24).
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Figure 24
Shale volume was obtained across seismic line #7059 using PNN neural network method.

According to the results for shale volume (Figures 20-23), the amount of shale in the Hendijan
hydrocarbon field is lower than that of the Bahregansar field. Both reservoirs are also divided into two
upper and lower parts of the Ghar formation by a Shaly layer.
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Conclusion

We used seismic attributes that are sensitive to hydrocarbon petrophysical properties such as water
saturation, porosity, and shale volume to study the Ghar formation. We estimated the reservoir porosity
between 15% and 20% being higher in Hendijan than in the Bahregansar oilfield. The amount of the
Ghar formation water saturation varies between 25 and 30 percent. On the other hand, the amount of
clay content and shale volume in the Ghar formation in the Hendijan oilfield is higher than that of the
Bahregansar oilfield. Based on the obtained results, the Ghar Formation was divided into two parts: a
shaly layer which is the upper part of the formation and is more saturated than the lower part. We
conclude that the Ghar formation horizon in the Hendijan oilfield has better hydrocarbon quality than
the Bahregansar.
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