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Abstract 

The model-based optimization of the waterflooding process has found significant scope for improving 

the economic life-cycle performance of oil fields due to geological and economic uncertainties 

compared to conventional reactive strategies. This paper proposes a new frequency-based system 

identification method to identify a robust multi-input, multi-output (MIMO) surrogate model for an 

oil reservoir under waterflooding process so as to describe all the injector-producer relationships. In 

contrast to the conventional modeling methods, the proposed data-driven modeling approach uses the 

available injection and production rates as the reservoir input–output data. Meanwhile, it includes a 

structured-bounded uncertainty model in the form of norm-bounded state-space function blocks to 

account for uncertainties, facilitating the identified model employed in robust control methodology 

using linear matrix inequality (LMI) problem formulation so as to eliminate the effect of model 

uncertainty. The identified MIMO surrogate model is integrated with a desired nonlinear net present 

value (NPV) objective function in a multi-input, single-output (MISO) system configuration to 

synthesize a model-based optimization prediction for economical operation and production of oil from 

oil reservoirs under both geological and economic uncertainties. The introduced approach is 

implemented on the “EGG model” as a well-recognized three-dimensional synthetic oil reservoir with 

eight water injection wells and four oil production wells. The results demonstrate that economic 

performance prediction of the oil reservoir, having an uncertain permeability field, lies in the 

evaluated bound of the uncertainty model. Waterflooding is a well-known method for increasing oil 

production. A significant amount of time and effort is required even for high-performance processors 

to numerically simulate a reservoir with thousands of grid blocks. On the other hand, there is a high 

uncertainty level in oil reservoir model-based economic optimization due to limited information about 
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geological model parameters. Employing robust control methods can provide robustness for the 

performance and stability of the control system against model norm-bounded uncertainty. However, 

in all standard identification methods, it is assumed that the uncertainties in the model can be 

accommodated in the form of noise. Therefore, the challenge of using the models estimated from the 

standard identification approach in robust control methods can mainly be considered an essential 

subject. This paper presents a new frequency-based modeling approach to identify a surrogate model 

and uncertainty modeling for the waterflooding process with the ease of being employed in robust 

control methods. A desirable relationship is obtained between the injection rate and the economic 

production function to model the dynamics of the reservoir using the identification of the surrogate 

model. Then, the concept of structure bounded uncertainty modeling is presented to describe the 

model geological uncertainty.  

Keywords: Economic, Surrogate model, System identification, Waterflooding 

 

1. Introduction 

It is required to increase the recovery of oil from existing reservoirs to fill the current gap in the supply 

and demand of energy. An oil reservoir has a typical life span of about a few decades, wherein a 

maximum of three stages of production can take place. Theoretically speaking, 20% to 70% of current 

procured oil can be recovered using secondary recovery mechanisms (Van den Hof et al., 2009). 

Waterflooding is the most commonly used secondary oil recovery method in which water is injected 

into the reservoirs using injection wells to stabilize the pressure in the reservoir and sweep the oil through 

the porous formation rock into the production wells. Reservoir performance prediction is critical in oil 

reservoir management strategies to achieve maximum economic benefits in oil reservoirs under the 

waterflooding process. Decline curve analysis (DCA) and numerical reservoir simulation are classic 

methods for predicting reservoir performance. These methods have their strengths and weaknesses 

(Olominu et al., 2014). The DCA is one of the most traditional methods proposed in the work of Arps 

et al. (1945) for cases where there is no access to high-speed processors for processing vast amounts of 

production and pressure data. 

However, the applications of the DCA are limited to production in stationary states and when the 

reservoir is under dominant frontier flow, requiring that the compressibility of rocks and fluids be at a 

constant and insignificant value. This method is inapplicable to high-compressibility cases, such as gas 

reservoirs and oil extraction using oil-soluble gas. On the other hand, numerical reservoir simulation 

(Fanchi et al., 2005) is a more accurate and robust solution for predicting the performance of reservoirs. 

Simulated models of reservoirs provide a mathematical description of natural reservoirs by mass 

balance, momentum conservation, and the use of principal equations such as Darcy’s Law. However, 

developing such numerical models requires geological, petrophysical, and geophysical data along with 

charts of wells and information on properties of the desired fluids. Therefore, obtaining an accurate 

reservoir model is a challenging task accompanied by various and large amounts of uncertain data mainly 

because reservoirs are extensive systems with heterogeneous and incoherent physical properties. Given 

the large size of reservoirs, rock and fluid samples are commonly gathered from only certain reservoir 

parts. Statistical methods are used to predict the properties of rocks and fluids from the remaining parts 

How to cite this article 

Salahshoor, K. and Hoseini, S. M., Identification of a Surrogate Model for Economic Performance Prediction of Oil 

Reservoir Production Under Waterflooding Process, Iran J. Oil Gas Sci. Technol., Vol. 10, No. 3, pp. 99–116 2021. 
DOI: http://dx.doi.org/ 10.22050/ijogst.2021.138845, This is an Open Access article under Creative Commons Attribution 

4.0 International License.(creativecommons.org/licenses/by/4.0) /  

 

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Salahshoor, K. and Hoseini, S. M. / Identification of a Surrogate Model for Economic …. 101 

 

 

of the reservoir. Therefore, data used in modeling and predicting reservoir performance are the best 

estimates of the actual values. Furthermore, the history matching process, wherein the extracted features 

of the reservoir are continually adjusted with data until the simulated numerical model shows acceptable 

patterns similar to natural reservoirs, is a rather tricky procedure with its limitations (Tavassoli et al., 

2004; Cancelliere et al., 2011). 

Extensive research has been made in reservoir modeling, which shows that selecting the proper method 

is highly dependent on available data, desired accuracy, and time cost (Abou-Kassem et al., 2001). 

Reservoir simulation can be used as a proper technique for estimating reservoir performance. A 

numerical tool or mathematical model is required for predicting the performance of reservoirs to adopt 

the most suitable strategy for water injection in the secondary stage of oil removal (Fanchi et al., 2005). 

Recent advances in drilling and reservoir instrumentation have made it possible to use model-based 

control methods and optimize procedures to develop practical reservoir management strategies to further 

increase the economic efficiency of oil reservoirs. However, one major challenge in implementing these 

novel technologies is the issue of geological uncertainty (Alhuthali et al., 2008). Furthermore, the large 

scale and complexity of hydrocarbon reservoirs have created additional complexity in tools used for 

controlling these systems (Van den Hof et al., 2009). History matching has been used to address 

permeability uncertainty to realize different oil reservoir models (Oliver and Chen, 2011).  

However, regarding the problems of classic modeling of reservoirs, it is essential to find a simple, fast, 

and accurate method for modeling oil reservoirs under waterflooding. Fortunately, recent studies have 

focused on this issue. For instance, Sayyafzadeh et al. (2011) proposed a method for showing the 

relationship between the rate of different wells and the rate of a production well using a set of transform 

functions. A data assimilation algorithm can be introduced in a history matching scheme to achieve 

complete predictions through the modeling process (Emerick and Reynolds, 2013). However, the 

obtained history-matched models are complex, and the developed models cannot be used in robust 

production performance prediction and advanced oil reservoir management due to unbounded 

uncertainty intervals. Further, the reservoir models that incorporate highly nonlinear dynamic equations, 

having numerous parameters and states, make it impractical to realize efficient reservoir production 

management (Chen and Hoo, 2013). Tafti et al. (2013) proposed an AutoRegressive model with 

eXogenous input using an experimental design approach based on the physical properties of reservoirs. 

Rezapour et al. (2015) compared the prediction accuracy of various linear models in oil reservoirs under 

waterflooding, and Horoofar et al. (2016) also applied a system identification approach using a linear 

structure for modeling the SPE10 oil reservoir. 

Recent advances in excavation drilling and reservoir instrumentation have made it possible to use model-

based control methods and optimize procedures to develop executable practical reservoir management 

strategies to further increase the economic efficiency of oil reservoirs. However, the large scale and 

complexity of such hydrocarbon reservoirs have created additional complexity in tools used for 

controlling these systems (Van den Hof et al., 2009). Furthermore, one major challenge in implementing 

these novel technologies is the issue of geological uncertainty (Alhuthali et al., 2008). 

Despite the advantages of the proposed studies in the simulation of oil reservoirs under waterflooding, 

all the studies used a linear structure to model the procedure, which is inapplicable when considering 

the nonlinear dynamic time-variant behavior of reservoirs during all stages of operation. For example, 

the nonlinear and dynamic behavior of reservoirs is highlighted during the first stages of production, and 

linear-based predictions will not provide reliable results. Moreover, one of the main challenges in the 

closed-loop management of reservoirs is the high uncertainty caused by limited knowledge of the model 

parameters, which prevents the potential advantages of the economic performance prediction of the 
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closed-loop reservoir management from manifesting and can risk going beyond predicted economic 

costs. 

This study proposes a new identification method for modeling waterflooding process in oil reservoirs. 

The geological uncertainty is included using a structure-bound uncertainty model with the system 

identification method. System identification is the science and art of creating mathematical models for 

dynamic systems using observed input-output data (Ljung et al., 2010). System identification involves 

the proper design of excitation signals, selection of model structure, estimation of model parameters, 

and evaluation of the identified model. This modeling tool is highly flexible considering that it contains 

various structures for expressing different linear and nonlinear relationships. For the first time, this study 

proposes using surrogate model system identification and structure uncertainty modeling in state-space 

block formulation to account for the dynamics of waterflooding process in oil reservoirs. The proposed 

mechanisms can be used in reservoir management and advanced control and optimization strategies to 

achieve the main objective of improving the economic performance of an oil reservoir during the 

productive life span of oil reservoirs. 

Section 2 of this study includes theoretical and background information on the proposed strategy. Section 

3 shows the stages of developing the proposed method along with the obtained outcomes of model 

performance, and Section 4 demonstrates the results and conclusions. 

2. Background materials 

2.1. System identification 

System identification (SI) is a well-known method for modeling an unknown system for optimization 

and control. The main procedure focused in SI modeling is typical because the unknown system is 

considered a black box with specified inputs and outputs. Then, the dynamic mathematical model 

between any system input and output of the mathematical dynamic unknown systems can be determined 

using statistical methods and the recorded system input-output data. The ultimate objective is to obtain 

an appropriate dynamic mapping between the relevant system input and output to correctly predict the 

output of the system under different conditions. Therefore, after training the identified model, it can be 

used for prediction, control, and optimization purposes (Ljung et al., 2010). 

Equation-based methods for modeling oil reservoirs are commonly used in commercial and numerical 

simulators to model oil reservoirs. However, most of the information produced by commercial 

simulators can be regarded as redundant from the actual waterflooding procedure point of view. During 

waterflooding, the performance of oil reservoirs can be affected by certain input–output variables such 

as the rate of water injection in injection wells and water and oil production rates from production wells. 

Therefore, it is not required to model every existing phenomenon in oil reservoir; instead, it is only 

essential to determine the external model relationship between water injection rate as the input and water 

and oil production rates as the output relative input–output parameters variables. For this purpose, an oil 

reservoir model can be structured and configured in a multiple-input multiple-output dynamic model 

structure. This external input–output dynamic perspective of an unknown system is commonly used for 

modeling purposes in control theory. Therefore, it is essential to determine the accessible input and 

output ports of an oil reservoir. System identification procedure can be exercised to identify all the 

relevant external input–output dynamic models. In other words, the input and the output of the system 

must be accessible. In this study, water injection rates from injection wells and bottom hole pressure are 

typically used as the inputs for modeling waterflooding in oil reservoirs. 
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a. Surrogate model 

Surrogate modeling is an engineering tool used for calculating a y = f(x) mapping that hides the physical 

relationship between the x input vector (x) and the y input (y) as the output scalar (Forrester et al., 2008). 

Surrogate models, otherwise known as meta-models, are compressed analytical models used to describe 

the behavior of multi-input multi-output systems based on a limited number of simulations with a high 

computational load. The main idea behind creating surrogate models is to calculate a secondary function 

for each specified input value to estimate the desired model using the observed data without feed-forward 

simulations. The performance of the surrogate models depends on the input values and model structure. 

These models imitate the complex behavior of simulated models and can be used for optimization, 

sensitivity analysis, and control, requiring thousands of simulation iterations. It is required to calculate 

the desired output or the value of the secondary function corresponding to the input vector to create a 

surrogate model. The main objective of this study regarding reservoir management is to identify a robust 

surrogate model for an oil reservoir to be integrated with a net present value (NPV) function to control 

the rates of water and oil production from production wells for reservoir management objectives. 

Therefore, this study uses a net present value (NPV) function as the output for the proposed system. The 

NPV is an economic function used to evaluate the economic performance of a production procedure. In 

the oil industry, economic performance is analyzed by considering the profit of produced oil concerning 

production costs, including the cost of water injection and purification of produced water. The NPV 

function can be described by: 

𝐽𝑘 =
− ∑ 𝑟𝑤𝑖(𝑞𝑤𝑖,𝑖)𝑘

𝑁𝑖𝑛𝑗
𝑖=1 + ∑ [−𝑟𝑤𝑝(𝑞𝑤𝑝,𝑗

𝑁𝑝𝑟𝑜𝑑
𝑗=1 )𝑘𝑟𝑜𝑝(𝑞𝑜𝑝,𝑗)𝑘] 

(1 + 𝑏)
𝑡𝑘
𝑑𝑡

 

(1) 

where 𝑞𝑤𝑖,𝑖, 𝑞𝑤𝑝,𝑗, and 𝑞𝑜𝑝,𝑗 are the rates of injected water, produced water, and produced oil, 

respectively. 𝑟𝑤𝑖, 𝑟𝑤𝑝, and 𝑟𝑜𝑝 indicate the costs of water injection, water purification, and oil price, 

respectively. b, dt, tk, Ninj, and Nprod denote the discount rate, time of sampling, the moment of time, 

and the number of injection and production wells, respectively. 

b. Linear system identification  

Most characteristic features of a system can be extracted from the linear time-invariant (LTI) model of 

the system because such systems can be described using linear differential equations. These features 

include impulse response, convolution, double, stability, and scaling, and the characteristics of a time-

invariant linear system cannot generally be applied to nonlinear systems. However, according to the law 

of simplicity, the first solution for identifying nonlinear systems is to use a linear model structure to 

preserve such characteristic features for unknown systems. 

Transfer functions are external mathematical representations of the dynamic relationships between the 

individual inputs and outputs of a system. In a linear time-invariant system, transfer functions can be 

defined as the ratio of the Laplace transform of the output to the input, which is, in fact, the Laplace 

transform of the system impulse response of the system (Equation (2)). 

𝑌(𝑠) =  𝐺(𝑠) 𝑈(𝑠) (2) 

The transfer function of a system is a fractional function where the numerator and denominator are 

polynomials (Equation (3)). 
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𝐺(𝑠) =
𝑏𝑚𝑠 + ⋯ + 𝑏0𝑠

𝑎𝑛𝑠 + ⋯ + 𝑎0𝑠
=

𝑁(𝑠)

𝐷(𝑠)
 

(3) 

The roots of N(s) and D(s) are called the zeros and poles of the system, respectively. Poles and zeros are 

generally complex numbers that describe the dynamics of the system (Ljung et al., 2010). 

After determining the relevant input–output pairs for the unknown system, system identification can be 

carried out based on a proper transfer function model structure that can optimally describe the 

performance of an oil reservoir. Prior to estimating the model parameters, the model order should be 

selected. For this purpose, fitness and simplicity are usually used as two main principles to determine an 

order for the system model. According to the fitness principle, model structure and its order should be 

chosen so that the sum of squared errors, i.e., 𝑺̂ = ∑ 𝒆̂𝒊
𝟐𝑵

𝒊=𝟏  , is minimized where the prediction error is 

defined as: 

𝑒̂𝑖 = 𝑦𝑡 − 𝑦̂𝑡 (4) 

𝑦̂𝑡 = 𝑢𝑡
𝑇𝜃 (5) 

The fitness principle seeks to create a relationship between the gathered system input and output 

variables based on the minimum error. The principle of simplicity ensures that in choosing between two 

optional model orders 𝑛1 and 𝑛2 (𝑛2 <  𝑛1), the simpler model structure should be selected if it is 

sufficiently accurate because working with lower-order models is far simpler than high-order models. 

The final choice for the order of the system is highly dependent on the final application objective of the 

system modeling. For example, if the objective is to find faults in the system, a highly accurate model is 

required. However, if the objective is to design a controller for the system or to perform an optimization, 

a lower-order model will suffice. Accordingly, trial and error can obtain the proper order for an oil 

reservoir under the waterflooding process. 

2.2. Uncertainty modeling  

Uncertainty is an inevitable part of modeling real-world control systems. Generally, uncertainty falls 

into two categories: 

 Disturbance signals; 

 Dynamic deviations; 

Disturbance signals involve a disturbance in both input and output of the unknown system deviations in 

sensors and operators. In experimental conditions, dynamic deviations contribute to the difference 

between the mathematical and the actual dynamic models. A mathematical model of practical systems 

is, in fact, always an estimate of the actual dynamic system. Common sources of these differences 

include dynamics not correctly modeled (usually in high frequencies), neglected nonlinear dynamics in 

modeling, effects of deliberate model order reduction in order, and changes in system parameters due to 

factors such as environmental changes and worn-out equipment. Such errors in modeling can affect the 

stability and performance of the system. This section will investigate how to model uncertainty in system 

identification to be later used in analyzing the robustness of the identified model in applications such as 

the design of controllers. Equation (4) describes a linear continuous-time system (Mao et al., 1998). 

𝑥̇(𝑡) = 𝐴(𝑡)𝑥(𝑡) + 𝐵(𝑡)𝑢(𝑡) (6) 
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𝑦(𝑡) = 𝐶(𝑡)𝑥(𝑡) + 𝐷(𝑡)𝑢(𝑡)  

This system can be modeled as an uncertain linear system using Equation (5) as described below:  

𝑥̇(𝑡) = (𝐴 + ∆𝐴(𝑡))𝑥(𝑡) + (𝐵 + ∆𝐵(𝑡))𝑢(𝑡)  

𝑦(𝑡) = (𝐶 + ∆𝐶(𝑡))𝑥(𝑡) + (𝐷 + ∆(𝑡))𝑢(𝑡) (7) 

where 𝑥𝜖𝑅𝑛 is the state vector, 𝑦𝜖𝑅𝑝 denotes the measured output, and 𝑢𝜖𝑅𝑚 indicates the system input 

control vector. A, B, C, and D are constant matrices with adequate dimensions. Uncertainty was modeled 

using the following structure bound formula below: 

∆𝐴(𝑡) = 𝑀𝐴𝐹(𝑡)𝑁𝐴 (8) 

where 𝑀𝐴 𝜖𝑅𝑛×𝑘 and 𝑁𝐴𝜖𝑅𝑙×𝑛 are both known, and 𝐹(𝑡)𝜖𝑅𝑘×𝑙 is unknown with an upper bound of 

𝐹(𝑡) ∗ 𝐹(𝑡) ≤ 𝐼; I is the identity matrix (Mao et al., 1998). Similarly, we can have:  

∆𝐵(𝑡) = 𝑀𝐵𝐹(𝑡)𝑁𝐵 

(9) ∆𝐶(𝑡) = 𝑀𝐶𝐹(𝑡)𝑁𝐶  

∆𝐷(𝑡) = 𝑀𝐷𝐹(𝑡)𝑁𝐷 

The systematic algorithm for modeling uncertainty using a structure bound method can be described as 

follows: 

Calculating the maximum and minimum of all variable elements in the matrices: 

𝑎𝑖𝑗𝑚𝑖𝑛 ≤ 𝑎𝑖𝑗(𝑡) ≤ 𝑎𝑖𝑗𝑚𝑎𝑥 

𝑏𝑖𝑗𝑚𝑖𝑛 ≤ 𝑏𝑖𝑗(𝑡) ≤ 𝑏𝑖𝑗𝑚𝑎𝑥 

𝑐𝑖𝑗𝑚𝑖𝑛 ≤ 𝑐𝑖𝑗(𝑡) ≤ 𝑐𝑖𝑗𝑚𝑎𝑥 

Calculating the average of all variable elements in the matrices: 

𝑎𝑖𝑗m =
𝑎𝑖𝑗min + 𝑎𝑖𝑗max

2
 

𝑏𝑖𝑗m =
𝑏𝑖𝑗min + 𝑏𝑖𝑗max

2
 

𝑐𝑖𝑗m =
𝑐𝑖𝑗min + 𝑐𝑖𝑗max

2
 

Calculating the maximum and minimum values of elements in ∆𝑎𝑖𝑗(𝑡), ∆𝑏𝑖𝑗(𝑡), and ∆𝑐𝑖𝑗(𝑡): 

ℎ𝐴𝑖𝑗 =
𝑎𝑖𝑗max − 𝑎𝑖𝑗min

2
 

ℎ𝐵𝑖𝑗 =
𝑏𝑖𝑗max − 𝑏𝑖𝑗min

2
 

ℎ𝐶𝑖𝑗 =
𝑐𝑖𝑗max − 𝑐𝑖𝑗min

2
 

We place all the constant elements in matrices A(t), B(t), and C(t) along with the average values in 

matrices A, B, and C, respectively. 

We determine the constant matrices in the uncertainty model of (𝑀𝐴, 𝑁𝐴, 𝑀𝐵, 𝑁𝐵 , 𝑀𝐶 , and 𝑁𝐶) according 

to the indefinite band: 

∆𝐴(𝑡) = 𝑀𝐴𝐹(𝑡)𝑁𝐴 

∆𝐵(𝑡) = 𝑀𝐵𝐹(𝑡)𝑁𝐵 

∆𝐶(𝑡) = 𝑀𝐶𝐹(𝑡)𝑁𝐶  

−1 ≤ 𝐹(𝑡) ≤ 1 
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2.3. Reservoir model  

The Egg model was used in this study to produce the required input and output data. The egg model was 

developed as part of Martin Zendolit’s doctoral thesis. Later on, Zendolit et al. (2007) published the first 

paper on this model. The Egg model represents a three-dimensional synthetic reservoir model which 

contains 100 permeability realizations of an oil reservoir with 8 water injection wells and 4 oil 

production wells. The Egg model has been used in various studies to simulate a two-phase current 

(water–oil). Since the model lacks water and gas caps, the initial mechanism production rate is 

insignificant, and production typically occurs by waterflooding using eight injection wells and four 

production wells (Figure 1). Approximately 100 permeability scenarios have been carried out to show 

the geological uncertainty in oil reservoirs. Unfortunately, details on confining the Egg model 

parameters have not been the same in every research. The differences were mainly due to fluid 

parameters and network cell sizes. 

Additionally, the parameter configurations in these studies have not been well documented, which makes 

it difficult and almost impossible to reproduce similar numerical results. The configurations for this 

study were set according to the standard model proposed by Johnson et al. (2014). Table 1 lists the 

parameters of the standard model. 

 

Figure 1 

Locations of both injection and production wells used in the reservoir model. 

Table 1 

Standard model parameters and fluid properties. 

Symbol                           Variable                         Value                         SI unit 
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h                                  Grid-block height                       4                               m 

∆x, ∆y                       Grid-block length/width               8                              m 

Ф                                         Porosity                            0. 2                           - 

𝐂𝐨                                        Oil compressibility                1.0×10−10
                        Pa−1

 

𝐂𝐫                                    Rock compressibility                    0                               Pa−1 

𝐂𝐰                                  Water compressibility                1.0×10−10                Pa−1 

µ𝐨                                Oil dynamic viscosity            5.0×10−3                    Pa s 

µ𝐰                            Water dynamic viscosity           1.0×10−3                   Pa s 

𝐤𝐫𝐨
𝟎                        End-point relative permeability, oil     0.8                        - 

𝐤𝐫𝐰
𝟎                     End-point relative permeability, water    0.7                       - 

𝐧𝐨                                Corey exponent, oil                        4                        - 

𝐧𝐰                             Corey exponent, water                      3                        - 

𝐒𝐨𝐫                         Residual-oil saturation                         0.1                      - 

𝐒𝐰𝐜                         Connate-water saturation                     0.2                      - 

𝐏𝐜                               Capillary pressure                             0.0                      - 

𝐏𝐑                Initial reservoir pressure (top layer(         40×106               Pa 

𝐒𝐰,𝟎                      Initial water saturation                            0.1                     - 

𝐏𝐛𝐡              Production well bottom-hole pressures                      39.5×106              Pa 

𝐫𝐰𝐞𝐥𝐥                        Well-bore radius                                      0.1               m 

3. Data production 

Modeling in system identification is based on the identification test. If this test is not carried out 

correctly, even the most complex identification algorithms will not produce a valid system model for the 

desired procedure application. On the other hand, if the system input and output data result from an 

appropriate identification test, the least-squares method can be used as the simplest statistical method in 

system identification which commonly satisfies modeling requirements.  

The required data for system identification can include data gathered from actual reservoirs or data 

procured using an excellent commercial simulator such as Eclipse. The reservoir model structure can be 

represented by is a typical sample of a MIMO system. This study employed a basic system identification 

strategy for MIMO systems. In other words, to identify the dynamic model relationship between each 

system input and output pair at any moment in time, an excitation signal was applied to the desired 

system input, while the other system inputs remained fixed. Using a proper excitation signal can enhance 

the performance quality of system identification. In other words, using rich input signal excitation data 

increases the accuracy of the procedure identified model. Therefore, the unknown system must be 

simulated so that all its dynamic modes in all the frequency ranges are excited. For this purpose, a 

persistently exciting signal must be applied to the input of the unknown system. Therefore, a 

pseudorandom binary signal (PRBS) is selected in this study as the excitation signal that covers a vast 

spectrum of frequencies through trial and error. However, in actual-world circumstances, such a random 

signal cannot be applied as the input to an oil reservoir because the control valves cannot perform such 

high-frequency commands. 

Consequently, a suitable excitation signal with a limited frequency range must be used to satisfy the 

operational constraints for the proposed unknown system oil reservoir. This signal is then placed on top 

of the optimum input signal in the steady-state reservoir conditions to improve economic performance. 

The optimum input can be obtained using a model-based optimization procedure. Figures 2 and 3 show 

the water injection rate in injection well No. 1 and the amount of produced water and oil from the 

production wells, while inputs from the other injection wells are kept fixed in their steady-state 

conditions. As discussed in the previous sections, the desired output or value of the NPV secondary 
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function corresponding to the applied input must be calculated to build the surrogate model. The NPV 

function was used as the secondary function in this study. 

 

Figure 2 

Water injection profile for injection well No. 1. 

 



Salahshoor, K. and Hoseini, S. M. / Identification of a Surrogate Model for Economic …. 109 

 

 

 

Figure 3 

Profiles for produced water and oil. 

Table 2 shows the values for these NPV function parameters. Without hindering the totality of the subject 

and for convenience, uncertainty was modeled by simultaneously applying the desired input for five 

different instances of permeability. After using injection and production data for the first permeability 

case in Equation (1), the desired data for identifying the surrogate model is obtained. Figure 4 shows 

this concept. Input and output are simultaneously recorded according to Figures 4 and 5.  

Table 1 

The NPV function parameters. 

Parameter Value Unit 

b 0 - 

𝐫𝐨𝐩 80 $/𝑚3 

𝐫𝐰𝐩 10 $/𝑚3 

𝐫𝐰𝐢 5 $/𝑚3 

 

Figure 4 

Block diagram for calculating the desired output (Zanbouri and Salahshoor, 2018). 
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Figure 5 

The NPV cumulative profile calculated by simulating the oil reservoir using the MRST simulator. 

4. Results 

The MSRT simulator was used to implement the proposed algorithms (Lie et al., 2014). This simulator 

software provides facilities for controlling each well by altering injection rate and bottom-hole pressure. 

Since the ultimate objective of modeling oil reservoirs under the waterflooding process is to control the 

reservoir output and optimize reservoir performance, water injection rate in injection wells can be 

considered manipulative variables. In addition, bottom-hole pressure has been assumed as fixed, 

following operational standards. Furthermore, the output of the procedure configuration identified in 

Figure 4 was chosen as the cumulative NPV value for the relative oil reservoir . 

This section investigates the identification of the surrogate model using a system identification approach. 

Numerous models that have been obtained from particular varying permeability scenarios were then 

obtained to model uncertainty. For this purpose, the system identification approach was repeated for 

different permeability scenarios. The identified model is then evaluated in regards to validity and 

prediction efficiency. Finally, bound structure modeling of uncertainty is discussed in detail. 

4.1. Model estimation 

Transfer functions can also be used to describe the frequency response of a system, which represents 

how a system responds to signals with different frequencies. Figure 6 shows the general structure of the 

surrogate model that needs to be identified. 
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Figure 6 

The general structure of the MISO surrogate model. 

The transfer function between each input–output pair in Figure 4 can now be obtained using the system 

identification toolbox in MATLAB software. For this purpose, an excitation signal was applied to one 

input at a time, while the remaining inputs were kept fixed in their steady-state conditions. Table 3 shows 

the identified MISO model structure for the first permeability scenario in terms of transfer functions. 

The obtained consistency terms in Table 3 represent that the identified transfer function is entirely 

accurate. This measure indicates the accuracy of each individual identified frequency response model, 

which is confirmed by comparing the identified frequency response plot with the actual frequency 

response data in terms of mean squared error (MSE), being automatically calculated by MATLAB for 

validation purposes. 

Table 3 

The identified MISO surrogate model for permeability scenario of well No. 1. 

No Model Consistency 

1 G1(s) =
89.14

 s +  0.000204
 97.08% 

2 G2(s) =
88.36

 s +  0.0004144
 96.01% 

3 G3(s) =
 83.37

 s + 0.0001411 
 98.06% 

4 G4(s) =
 85.54

 s + 0.00013 
 96.32% 

5 G5(s) =
 92.31

 s +  0.0002211 
 95.11% 

6 G6(s) =
  83.76

  s +  0.0001017 
 98.13% 

7 G7(s) =
  84.28

   s +  0.0001027 
 97.79% 

8 G8(s) =
  89.1

  s +  0.0001637 
 95.85% 

4.2. Evaluating the identified model 

Certain assumptions have been made during modeling using the system identification approach. One of 

these assumptions is that the system is linear and may not be valid or right or wrong under different 

conditions. For this reason, the obtained identified model must be evaluated. If evaluation results prove 

the model validity, the model can be used; otherwise, the entire identification procedure must be 
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inspected to find the root of the problem. Both simulation and statistical analysis techniques have been 

used to evaluate the proposed model in this study. 

A new input was applied to the identified model using simulation, and the real and predicted outputs 

were compared. The simulation approach works on a graphical basis, where one can look at a graph to 

observe the difference between predicted and accurate outputs and decide on the reliability of the model. 

However, the analysis can also be carried out quantitatively. For this purpose, the sum of squared errors 

for different models is obtained, and the identified model with the slightest error is selected as the desired 

model. 

One statistical analysis method used in this paper to validate the identified model is the correlation test. 

Ideally, prediction errors of a dynamic model must not depend on the input or the remnants of the 

previous stages. Since the number of samples in this study is limited, the excellent correlation value for 

nonzero points is not zero, demanding further investigation on whether these nonzero values are due to 

the limited number of samples or a result of the correlation with remnant errors and whether the 

identification process is complete. It is only required to calculate the autocorrelation and the cross-

correlation functions using the following equations to find the answer to these questions. If the values 

of these functions reside in the optimal region, the identified model is valid. 

𝑅𝑒(𝜏) =
1

𝑁
∑ 𝑒(𝑡)𝑒(𝑡 − 𝜏)𝑁

𝑡=1   𝜏 = 1,2, …. (11) 

𝑅𝑢𝜀(𝜏) =
1

𝑁
∑ 𝑢(𝑡)𝜀(𝑡 − 𝜏)𝑁

𝑡=1   𝜏 = 1,2, …. (12) 

The identified model for the first permeability scenario using methods is shown in Figures 7 and 8. 

Figure 8 consists of an auto-correlation function plot (the first from the left) and eight cross-correlation 

function plots. The same approach can be used for other scenarios. 

 

Figure 7 

Comparison of the actual output with the model output for the first realization of the unseen input. 
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Figure 8 

The diagram of auto-correlation and cross-correlations functions for the identified model. 

The evaluation results for the identified models in Figures 7 and 8 show that the system identification 

has been very efficient, leading to the accurate models listed in Table 3 that can be used in oil prediction, 

designing controllers design, and other applications. 

4.3. Modeling uncertainty using structure-bound approach 

As discussed in the previous sections, uncertainty is an inevitable part of modeling oil reservoirs. This 

section models the geological uncertainty of reservoirs using a structure-bound approach. One of the 

advantages of this approach is that it can transform the robust control problem into a linear matrix 

inequality (LMI) and can eliminate the effects of uncertainty on NPV control.  

According to the explanations given in Section 2.2 for modeling uncertainty, the range of changes in 

variable values in the oil reservoir model matrix must be determined. For this purpose, five permeability 

scenarios were considered, and the range of the rate of changes in uncertain parameters corresponding 

to the identified models for each of the scenarios was determined. Tables 4 and 5 present the range of 

changes in uncertain parameters. 

Table 4 

The maximum and minimum values for the variable elements in matrix A. 

Maximum Minimum A 

–2.0447e–04 `–3.2730e–04 𝐚𝟏𝟏 

–3.3420e–04 –4.1440e–04 𝐚𝟐𝟐 

–1.4115e–04 –1.9563e–04 𝐚𝟑𝟑 

–6.3110e–05 –1.2996e–04 𝐚𝟒𝟒 

–1.5980e–04 –2.2114e–04 𝐚𝟓𝟓 

–3.3299e–05 –1.0165e–04 𝐚𝟔𝟔 

–1.0268e–04 –1.5363e–04 𝐚𝟕𝟕 

–1.6368e–04 –2.8491e–04 𝐚𝟖𝟖 
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Table 5 

The maximum and minimum values for the variable elements in matrix C. 

Maximum Minimum C 

11.4683 11.1419 𝐜𝟏𝟏 

12.4077 11.0448 𝐜𝟏𝟐 

10.5943 10.4213 𝐜𝟏𝟑 

10.6923 10.0801 𝐜𝟏𝟒 

11.5386 10.9128 𝐜𝟏𝟓 

10.4702 9.7436 𝐜𝟏𝟔 

10.9524 10.5353 𝐜𝟏𝟕 

12.2015 11.1378 𝐜𝟏𝟖 

Following the systematic algorithm for modeling uncertainty in Section 2.2, the structure-bound terms 

can be determined by placing the constant elements and average of variable elements in matrices A and 

C. By obtaining the indefinite band ∆A(t) and ∆C(t), we obtain (Section 2.2): 

𝑥̇(𝑡) = (𝐴 + ∆𝐴(𝑡))𝑥(𝑡) + 𝐵𝑢(𝑡) 

(13) 
𝑦 = (𝐶 + ∆𝐶(𝑡))𝑥(𝑡) 

∆𝐴(𝑡) = 𝑀𝐴𝐹(𝑡)𝑁𝐴 
∆𝐶(𝑡) = 𝑀𝐶𝐹(𝑡)𝑁𝐶   

Table 6 

The indefinite band for matrix A. 

𝑴𝑨𝑵𝑨 Value ∆𝑨(𝒕) 

6.1414e–05 𝑴𝑨𝟏𝑭(𝒕)𝑵𝑨𝟏 ∆𝐀(𝐭)𝟏𝟏 

4.0102e–05 𝑴𝑨𝟐𝑭(𝒕)𝑵𝑨𝟐 ∆𝐀(𝐭)𝟐𝟐 

2.7244e–05 𝑴𝑨𝟑𝑭(𝒕)𝑵𝑨𝟑 ∆𝐀(𝐭)𝟑𝟑 

3.3427e–05 𝑴𝑨𝟒𝑭(𝒕)𝑵𝑨𝟒 ∆𝐀(𝐭)𝟒𝟒 

3.0670e–05 𝑴𝑨𝟓𝑭(𝒕)𝑵𝑨𝟓 ∆𝐀(𝐭)𝟓𝟓 

3.4176e–05 𝑴𝑨𝟔𝑭(𝒕)𝑵𝑨𝟔 ∆𝐀(𝐭)𝟔𝟔 

2.5472e–05 𝑴𝑨𝟕𝑭(𝒕)𝑵𝑨𝟕 ∆𝐀(𝐭)𝟕𝟕 

6.0612e–05 𝑴𝑨𝟖𝑭(𝒕)𝑵𝑨𝟖 ∆𝐀(𝐭)𝟖𝟖 

Table 2 

The indefinite band for matrix C. 

𝑴𝑪𝑵𝑪 Value ∆𝑪(𝒕) 

0.1632 𝑴𝑪𝑭(𝒕)𝑵𝑪𝟏 ∆𝐂(𝐭)𝟏𝟏 

0.6815 𝑴𝑪𝑭(𝒕)𝑵𝑪𝟐 ∆𝐂(𝐭)𝟐𝟐 

0.0865 𝑴𝑪𝑭(𝒕)𝑵𝑪𝟑 ∆𝐂(𝐭)𝟑𝟑 

0.3061 𝑴𝑪𝑭(𝒕)𝑵𝑪𝟒 ∆𝐂(𝐭)𝟒𝟒 

0.3129 𝑴𝑪𝑭(𝒕)𝑵𝑪𝟓 ∆𝐂(𝐭)𝟓𝟓 

0.3633 𝑴𝑪𝑭(𝒕)𝑵𝑪𝟔 ∆𝐂(𝐭)𝟔𝟔 

0.2086 𝑴𝑪𝑭(𝒕)𝑵𝑪𝟕 ∆𝐂(𝐭)𝟕𝟕 

0.5318 𝑴𝑪𝑭(𝒕)𝑵𝑪𝟖 ∆𝐂(𝐭)𝟖𝟖 

One of the advantages of the proposed method in this study compared to a recent study of Zanbouri et 

al. (2018) regarding the modeling uncertainty issue is that the obtained structure-bound terms can easily 
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convert the problem of robust control into a linear matrix inequality problem to facilitate implementation 

of the problem in a robust control context, eliminating the effect of uncertainty. 

5. Conclusions 

This study proposes a novel strategy to develop a robust surrogate model in MIMO structures. It 

incorporates uncertainty modeling in terms of state-space structure-bound terms for oil reservoirs under 

waterflooding process. For this purpose, a frequency response-based system identification model is 

proposed for modeling waterflooding oil reservoirs leading to the identified MISO model represented in 

Table 3 for the first permeability scenario. The modeling procedure starts by initially designing an 

appropriate excitation signal and applying it through an injection well. The production data can be 

acquired from the economic NPV function, facilitating the generation of the input–output data required 

during the identification experiment. Having selected a suitable order, the model structure is then 

selected following the principles of simplicity and fitness, and the model is estimated using the 

MATLAB system identification toolbox. Finally, simulation and remnant analysis are used to evaluate 

the validity of the identified model. This procedure is performed for five different permeability scenarios 

for a set of indefinite models. The evaluation results show that the identified model is adequately valid 

for control and optimization applications. Following that, an uncertainty border estimation approach is 

presented for linear identification models to enable the model uncertainty to be expressible by state-

space model block configurations in Tables 6 and 7 in terms of matrices A and C. For this purpose, 

uncertainty modeling is interpreted in the form of identifying various models for different permeability 

scenarios and determining the range of changes of indefinite parameters based on the identified model. 

The indefinite bands are then determined using the uncertainty modeling algorithm. Therefore, the 

identified oil reservoir model, integrated with an economic NPV function, can emulate a model-based 

optimization prediction scheme for the economic operation and production of an oil reservoir under 

uncertainties. Meanwhile, the obtained state-space uncertainty block configurations demonstrate that the 

identified model can be applied to robust control strategies using linear matrix inequalities for reservoir 

management objectives. The impact of oil reservoir uncertainty on total economic performance can then 

be compensated. 

Nomenclatures 

ARX Autoregressive model with exogenous input 

bh Bottom-hole 

C Compressibility (Pa–1) 

𝐾𝑟 Relative permeability 

MIMO Multi-input multi-output 

MISO Multi-input single-output 

MRST MATLAB reservoir simulation toolbox 

NPV Net present value 

O Oil 

P Pressure (Pa)  

PE Persistently exciting 

PRBS Pseudorandom binary signal 

r Rock 

R Reservoir 
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S Saturation 

SI System identification 

W Water 

𝜇 Viscosity 
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