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Abstract 

Challenges of rock absolute permeability prediction of tiny samples are remarkable when laboratory apparatus 

is not applicable and there is no pore network modeling. The prediction using the characterization of micro-

computed tomography images has been studied in this paper. Twenty series of 2D micro-computed tomography 

rock binary images have been collected, and each was considered a 3D binary image. Their geometric measures 

in 2D and 3D for measuring image properties have been considered using Minkowski functionals and available 

functions, developing a regression model; absolute permeabilities have also been evaluated. Some 2D and 3D 

geometric properties are considered. The area, the perimeter, and the 2D Euler number are 2D binary image 

properties. The volume, surface area, mean breadth, integral of the mean curvature, and the 3D Euler number 

are 3D binary image properties. The porosity and number of objects have also been considered parameters of 

a regression model. Twenty-four parameters were evaluated, and some were chosen to perform linear 

regression. An equation was proposed based on the extensive study to predict rock permeability. This equation 

has two sets of parameter coefficients: one set predicts high-permeability rocks (above two Darcy), and the 

other used for low- and medium-permeability rocks (less than two Darcy) can be employed for carbonated 

rock. The average absolute relative error for conducted cases is 0.06.  
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1. Introduction  

Absolute permeability is an essential macroscopic property of porous media depending on its 

microscopic properties. Topological and geometrical properties and their relation with macroscopic 

properties such as permeability, porosity, and formation factor are greatly interesting for researchers. 

Nowadays, different techniques have been developed to characterize porous media (Gao et al., 2019; 

Hu et al., 2017) . 

Among these methods, micro-computed tomography, known as micro-CT imaging, is the most referred 

technique (Bartels et al., 2019). Permeability prediction from the direct application of Navier–Stocks 

equation on pore network has the problem of method selection, and convergence may occur. In other 

words, if one can find the relationship between some image properties with desired permeability, then 

the prediction of the desired property will be simple. 

Estimating permeability using rock properties was started by the Kozeny–Carman equation and 

developed in recent years when some parameters such as porosity or tortuosity were included (Berg, 

2014; Dabek et al., 2014). Benavente et al. (2015) proposed permeability prediction in sandstones and 

carbonated rock through a series of statistical models based on capillary imbibition, porosity, and pore 

structure.  

Standard parameters used in the quantitative analysis of spatial structures are area, perimeter in 2D, 

volume, surface area, and the mean breadth in 3D. Another parameter is the Euler–Poincaré 

characteristic, related to the topology of the structure. These parameters form the so-called Minkowski 

functionals that encompass standard geometric parameters such as volume, area, length, and the Euler–

Poincaré characteristic. The Euler–Poincaré characteristic is a standard connectivity parameter and 

equals the number of the connected components minus its number of holes for a planar structure. Using 

Euler characteristic and void ratio, Liu and coworkers predicted permeability in 3D porous media (Liu 

et al., 2017). Botha and coworker calculated the coefficient of determination from ordinary least squares 

modeling calculated characteristic (from the 5, 16, and 64 mm/voxel images) with lattice Boltzmann 

permeability from the 5 mm/voxel image (Botha and Sheppard, 2016). Their calculated characteristic 

consists of rock fabric, pore system, and Minkowski functionals. Saxena et al. concluded that reasonably 

accurate estimates of the permeability of natural rocks could be obtained from 2D thin sections without 

the reconstruction of the 3D rock, especially for sandstones (Saxena et al., 2017; Rabbani and 

Ayatollahi, 2015). Scholz et al. studied the relationship between permeability and morphology for 

porous structures composed of randomly placed overlapping circular or elliptical grains. They 

generalized arbitrary structures modeled and characterized by Minkowski functionals (Scholz et al., 

2015). Based on the performed study herein, the idea to predict permeability from a series of 2D images 

of rock is investigated, and two regression models have been developed . 

2. Methods 

Methods predicting permeability are going to be investigated herein. The study conducted herein is 

based on a statistical method to find a correlation to predict permeability using 2D and 3D image 

properties. In the following, parameters are going to be described . 

The area of an object and NumObjects are based on MATLAB documentation; the area of an object in 

the binary image corresponds roughly to the total number of pixels in the image but may not be the 

same because various patterns of pixels are weighted differently. An algorithm estimates the area of all 

of the pixels in an image by summing the areas of each pixel in the image. The area of an individual 

pixel is determined by looking at its 2-by-2 neighborhood. There are six different patterns, each 

representing a different area. Patterns with zero on pixels, one on pixels, two adjacent on pixels, two 
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diagonals on pixels, three on pixels, and all four on pixels are proportional to the area of 0, 1/4, 1/2, 3/4, 

7/8, and 1.0. In the algorithm, each pixel is part of four different 2-by-2 neighborhoods, indicating that 

a single on a pixel surrounded by off pixels has a total area of 1.0. NumObjects is the number of 

connected components (objects) in a binary image: connectivity of 4 and 8 for two dimensions; 6, 18, 

and 26 for three dimensions can be considered (MATLAB and Statistics Toolbox Release, 2012b) . 

The Euler number for the 2D binary image is a scalar whose value is the total number of objects in the 

image minus the total number of holes in those objects. Four-connected objects and eight-connected 

objects can be considered. If it is nonzero, a pixel is a part of the perimeter and connected to at least 

one zero-valued pixel. The connectivity can be 4 or 8 for two dimensions, 6, 18, or 26 for three 

dimensions (Legland et al., 2007) . 

Minkowski geometric measures for 2D image parameters are the area, the perimeter, and the (2D) Euler 

number; for 3D images, the parameters are the volume, the surface area (called surface), the mean 

breadth (also known as the integral of the mean curvature) and the (3D) Euler number. An algorithm 

given by Legland called imMinkowski can help calculate some of Minkowski’s properties (Legland et 

al., 2007). 

3. Results and discussion 

Twenty series of 2D micro-CT images of Imperial Colleague as listed in Table 1 have been studied. 

Among these series, six of them are sand packs named FA, FB, FC, LVA, LVB, and LVC; A1 is 

synthetic silica, and C1 and C2 are carbonated; Est is limestone, and S1, S2, S3, S4, S5, S6, S7, S8, S9 

and Berea are sandstones (Dong, 2008; Muljadi et al., 2016).  

Table 1 

The size and resolution of the 20 series of micro-CT images (Dong, 2008; Muljadi et al., 2016). 

Sample ID Size 
Resolution 

(micron/voxel) 
Sample ID Size 

Resolution 

(micron/voxel) 

S1 300 × 300 × 300 8.643 C1 400 × 400 × 400 2.85 

S2 300 × 300 × 300 4.956 C2 400 × 400 × 400 5.345 

S3 300 × 300 × 300 9.10 FA 450 × 450 × 450 9.996 

S4 300 × 300 × 300 8.96 FB 450 × 450 × 450 10.002 

S5 300 × 300 × 300 3.997 FC 450 × 450 × 450 10.002 

S6 300 × 300 × 300 5.10 Berea 400 × 400 × 400 5.345 

S7 300 × 300 × 300 4.803 LA 450 × 450 × 450 10.002 

S8 300 × 300 × 300 4.892 LB 450 × 450 × 425 8.851 

S9 300 × 300 × 300 3.398 LC 450 × 450 × 450 10.002 

A1 300 × 300 × 300 3.85 Est 650 × 650 × 650 3.3113 

One slice of some series of the images is depicted in Figure 1, and a list of different properties and their 

definitions used in our study are listed in Table 2. 
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Table 2 

Parameters definition and their correlation coefficient versus reported permeability. 

Parameter Definition 
Method of 

calculation 

R vs. reported 

permeability 

Porosity Porosity MATLAB function 0.651 

A2 The 2D area imMinkowski –0.309 

P22 The 2D perimeter of 2 connectivity imMinkowski 0.143 

P24 The 2D perimeter of 4 connectivity imMinkowski 0.137 

E24 The 2D Euler number of 4 connectivity imMinkowski –0.495 

E28 The 2D Euler number of 8 connectivity imMinkowski 0.558 

bw2p4 The 2D perimeter of 4 connectivity MATLAB function –0.423 

bw2p8 The 2D perimeter of 8 connectivity MATLAB function –0.418 

NObw2c4 The 2D number of objects of 4 connectivity MATLAB function –0.405 

NObw2c8 The 2D number of objects of 8 connectivity MATLAB function –0.457 

bw2a The 2D area MATLAB function –0.517 

V3 The 3D Volume imMinkowski –0.309 

S33 The 3D surface of 3 paths imMinkowski 0.045 

S313 The 3D surface of 13 paths imMinkowski 0.028 

B33 The 3D mean breadth of 3 path imMinkowski –0.511 

B313 The 3D mean breadth of 13 path imMinkowski –0.506 

E36 The 3D Euler number of 6 connectivity imMinkowski 0.603 

E326 The 3D Euler number of 26 connectivity imMinkowski 0.298 

NObw3c6 The 3D number of objects of 6 connectivity MATLAB function –0.096 

NObw3c18 The 3D number of objects of 18 connectivity MATLAB function –0.319 

NObw3c26 The 3D number of objects of 26 connectivity MATLAB function –0.333 

bw3p6 The 3D perimeter of 6 connectivity MATLAB function –0.277 

bw3p18 The 3D perimeter of 18 connectivity MATLAB function –0.385 

bw3p26 The 3D perimeter of 26 connectivity MATLAB function –0.393 

 

   

   

Figure 1 

The 2D binary image of some cases: from left to right and up to down the image belongs to S2, A1, LA, S3, and 

C1 (Dong, 2008; Muljadi et al., 2016). 
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Two functions are used to obtain properties: one is from the library functions of MATLAB, and the 

other is the algorithm written by Legland et al. (2007). The 24 parameters are calculated for 20 available 

cases. The correlation coefficient of each parameter versus its reported permeability is also obtained; 

parameter definition and calculation method are listed in Table 2, and the results are presented in Tables 

3–6. The correlation coefficient (R) is calculated by Equation (1).  

𝑅 =
∑ ∑ (𝐴𝑚𝑛 − 𝐴̅)(𝐵𝑚𝑛 − 𝐵̅)𝑛𝑚

√(∑ ∑ (𝐴𝑚𝑛 − 𝐴̅)2
𝑛𝑚 )(∑ ∑ (𝐵𝑚𝑛 − 𝐵̅)2

𝑛𝑚 )
 

(1) 

where R is the correlation coefficient, A̅ indicates the average of A, and B̅ represents the average of B. 

To calculate the correlation coefficient of the parameter versus permeability, A is the reported 

permeability, B is the value of the parameter, n equals 1, and m is equal to 20 as 20 cases are studied. 

The correlation coefficient of every two of the parameters is calculated to investigate the relationship 

between all the parameters. When the correlation coefficient between two parameters is 1.0, using the 

two parameters gives the same results. Based on the conducted study, the correlation coefficient 

between A2 and V3 is 1.0. A correlation coefficient between two investigating parameters approaching 

1.0 or being greater than 0.9 shows no privilege of selecting between any of these two parameters. The 

correlation coefficient between bw2p4 and bw2p8, B33 and B313, P22 and P24, S33 and S313, E24 

and E28, and NObw2c4 and NObw2c8 is 0.99. The correlation coefficient between P22 and S33 and 

between NObw2c4 and E24 is also 0.98. Further, the correlation coefficient between any two 

parameters of NObw3c18, NObw3c26, bw3p6, bw3p18, bw3p26 is higher than 0.90. 

Table 3 

Parameters values of S1, S2, S3, S4, and S5. 

Parameter S1 S2 S3 S4 S5 

Porosity 0.141 0.246 0.169 0.171 0.211 

A2 1.002147 1.001126 0.997458 1.001506 1.001465 

P22 90.20332 83.0798 147.4799 148.3414 49.34178 

P24 90.469 83.14083 147.1579 148.163 49.7437 

E24 0.000718 0.000694 0.002575 0.002775 0.00025 

E28 0.000716 0.000664 0.0025 0.002715 0.000238 

bw2p4 9.092578 14.75976 13.51054 13.78178 11.11281 

bw2p8 12.43035 20.35053 18.03157 18.36116 15.18527 

NObw2c4 0.000731 0.000736 0.002603 0.002817 0.000285 

NObw2c8 0.000729 0.00071 0.002534 0.002763 0.000275 

bw2a 0.013583 0.041255 0.012279 0.012714 0.063128 

V3 1.002147 1.001126 0.997458 1.001506 1.001465 

S33 127.1385 113.9553 216.2687 217.0337 67.31697 

S313 129.0639 114.5961 216.9746 217.9871 68.23403 

B33 559.3144 317.439 1799.836 1871.176 128.8573 

B313 575.1237 324.724 1809.792 1885.001 132.1661 

E36 –2.03E–05 –8.44E–05 –0.00011 2.33E–06 –6.70E–06 

E326 –3.90E–05 –0.0001 –0.00023 –0.00011 –1.48E–05 
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Parameter S1 S2 S3 S4 S5 

NObw3c6 1.76E–05 2.92E–05 0.000139 0.00015 1.76E–05 

NObw3c18 1.47E–05 1.86E–05 9.24E–05 0.00011 1.34E–05 

NObw3c26 1.43E–05 1.71E–05 8.47E–05 0.000103 1.28E–05 

bw3p6 0.000125 0.000119 0.000823 0.000875 8.36E–05 

bw3p18 0.000104 7.57E–05 0.000547 0.000643 6.35E–05 

bw3p26 0.000101 6.97E–05 0.000501 0.000602 6.07E–05 

Reported K 

(mD) 
1969 4318 143 273 4638 

Table 4 

Parameters values of S6, S7, S8, S9, and Berea. 

Parameter S6 S7 S8 S9 Berea 

Porosity 0.24 0.251 0.34 0.222 0.196 

A2 0.998304 0.997936 0.999446 0.998855 1.002311 

P22 46.44874 63.75716 61.48692 52.07811 138.0109 

P24 46.86053 63.86119 61.95136 52.5002 137.0187 

E24 0.000187 0.000353 0.000259 0.000356 0.001121 

E28 0.000163 0.000334 0.000252 0.000352 0.001064 

bw2p4 8.250154 11.80653 11.3862 13.73165 22.01797 

bw2p8 11.26511 16.34587 15.6979 18.77376 30.22633 

NObw2c4 0.000272 0.000407 0.00039 0.000373 0.0012 

NObw2c8 0.000258 0.000393 0.000386 0.000369 0.001151 

bw2a 0.03864 0.04367 0.042139 0.087147 0.035618 

V3 0.998304 0.997936 0.999446 0.998855 1.002311 

S33 64.1063 87.29302 87.36279 66.89002 177.8504 

S313 65.25598 88.12214 89.0066 67.94605 175.6787 

B33 75.61574 150.6109 114.683 145.5255 978.75 

B313 79.28986 155.7216 124.0396 149.5879 977.0689 

E36 –2.36E–05 –5.59E–05 –6.06E–05 –1.04E–05 –6.83E–05 

E326 –1.94E–05 –6.01E–05 –7.82E–05 –1.60E–05 –8.54E–05 

NObw3c6 1.66E–05 1.40E–05 4.36E–05 4.85E–06 4.28E–05 

NObw3c18 1.12E–05 9.19E–06 3.80E–05 4.44E–06 3.65E–05 

NObw3c26 1.02E–05 8.22E–06 3.66E–05 4.37E–06 3.52E–05 

bw3p6 6.91E–05 5.56E–05 0.000128 2.19E–05 0.000219 

bw3p18 4.66E–05 3.66E–05 0.000112 2.00E–05 0.000186 

bw3p26 4.24E–05 3.28E–05 0.000108 1.97E–05 0.000179 

Reported K 

(mD) 
11289 7268 13063 2735 1360 
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Table 5 

Parameters values of sand packs. 

Parameter LA LB LC FA FB FC 

Porosity 0.377 0.368 0.372 0.33 0.333 0.331 

A2 0.963074 1.002045 0.990353 0.97602 0.998468 0.993435 

P22 138.2828 129.3873 149.155 108.7522 110.3502 110.735 

P24 138.2299 128.7611 148.5314 108.0377 110.0948 110.8092 

E24 –0.00012 –0.00012 –4.48E–05 0.000417 –1.00E–05 –3.95E–05 

E28 –0.00027 –0.00026 –0.00023 6.91E–06 –7.29E–05 –8.19E–05 

bw2p4 12.36288 12.98506 13.22793 9.5262 9.825293 9.943895 

bw2p8 16.83466 17.86725 18.07862 12.98176 13.52377 13.72843 

NObw2c4 0.000366 0.000319 0.000438 0.000673 0.000205 0.000174 

NObw2c8 0.000292 0.00025 0.000343 0.000378 0.000168 0.000151 

bw2a 0.009772 0.012968 0.010058 0.009883 0.010097 0.010045 

V3 0.963074 1.002045 0.990353 0.97602 0.998468 0.993435 

S33 182.4199 161.8595 194.2795 138.8215 142.5115 143.5906 

S313 181.2389 160.4597 192.2729 137.212 141.999 143.645 

B33 46.81403 –4.67593 88.44484 271.1291 68.0258 41.72094 

B313 80.34152 21.58291 120.0397 262.9103 95.92433 63.78165 

E36 –0.00064 –0.0005 –0.0007 –0.00028 –0.00029 –0.0002 

E326 –0.00033 –0.00025 –0.00038 –0.0001 –9.72E–05 –9.52E–05 

NObw3c6 3.38E–05 3.08E–05 3.86E–05 0.000138 2.15E–05 1.73E–05 

NObw3c18 1.83E–05 1.70E–05 1.98E–05 3.98E–05 1.16E–05 8.90E–06 

NObw3c26 1.59E–05 1.50E–05 1.72E–05 2.96E–05 9.96E–06 7.55E–06 

bw3p6 8.97E–05 8.36E–05 0.000104 0.000418 6.46E–05 5.22E–05 

bw3p18 4.85E–05 4.61E–05 5.33E–05 0.000121 3.49E–05 2.69E–05 

bw3p26 4.22E–05 4.07E–05 4.61E–05 8.97E–05 2.99E–05 2.28E–05 

Reported K 

(mD) 
35300 31500 19400 59000 52300 50400 

Table 6 

Parameter values of A1, C1, C2, and Est. 

Parameter A1 C1 C2 Est 

Porosity 0.429 0.23 0.168 0.108 

A2 0.99919 1.011364 1.001831 1.197512 

P22 71.94223 83.32853 122.5244 152.9284 

P24 73.99697 83.52677 122.299 154.9405 

E24 0.000954 0.000539 0.00111 0.00025 

E28 0.000812 0.000488 0.001051 0.000246 

bw2p4 17.33644 25.78892 19.58634 41.74955 

bw2p8 22.44355 35.14716 26.52617 56.58973 

NObw2c4 0.001012 0.000684 0.001225 0.000287 
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Parameter A1 C1 C2 Est 

NObw2c8 0.000874 0.00065 0.001181 0.000284 

bw2a 0.068026 0.125627 0.035515 0.110099 

V3 0.99919 1.011364 1.001831 1.197512 

S33 104.1238 122.6036 173.7738 199.4889 

S313 107.8335 123.6523 173.9117 204.2984 

B33 206.9308 546.9094 1366.24 1021.263 

B313 195.5594 546.3308 1360.511 1059.566 

E36 –5.89E–05 2.38E–06 3.49E–05 –1.73E–05 

E326 –0.00023 –2.13E–05 –1.95E–05 –1.89E–05 

NObw3c6 0.000184 8.99E–05 0.00015 1.95E–06 

NObw3c18 3.32E–05 6.71E–05 0.00012 1.93E–06 

NObw3c26 3.22E–06 6.34E–05 0.000114 1.92E–06 

bw3p6 0.00043 0.000391 0.000893 1.81E–05 

bw3p18 7.74E–05 0.000292 0.000712 1.79E–05 

bw3p26 7.51E–06 0.000276 0.000678 1.78E–05 

Reported K (mD) 8272 785 38 172 

Based on the generated data and used parameters, a linear regression model to predict a variety of 

absolute permeabilities of rock was developed. The linear model was selected because it is simple and 

easy to work. The number of the parameters used in the equation was a challenge. Finally, after creating 

a linear model with different parameters, the model with the least number of parameters that can better 

predict the reported data was selected. Among parameters listed in Table 2, there are some parameter 

groups the members of which have the same behavior, so only one parameter from each group is 

considered in the final model expressed in Equation (2). 

Two sets of coefficient parameters were generated as listed in Table 7 to cover the full range of 

permeabilities. One set of coefficients was related to rocks with permeability lower than 2 Darcy, and 

the other set was related to those with permeability above 2 Darcy. In the case of permeability of 2 

Darcy, both sets can be used.   

𝐾 (𝑚𝐷) = 𝑎1 × 𝑝𝑜𝑟𝑜𝑠𝑖𝑡𝑦 + 𝑎2 × 𝑏𝑤2𝑎 + 𝑎3 × 𝐴2 +  𝑎4 × 𝑃22 + 𝑎5 × 𝑏𝑤2𝑝4

+ 𝑎6 × 𝐵33 + 𝑎7 × 𝑁𝑂𝑏𝑤3𝑐6 + 𝑎8 × 𝑁𝑂𝑏𝑤3𝑐18 + 𝑎9 × 𝐸36

+ 𝑎10 × 𝐸326 + 𝑎11 × 𝐸24 

(2)                                                                                                                  

where K is absolute permeability, bw2a indicates the 2D area calculated by MATLAB function, a2 is 

the 2D area calculated by imMinkowski, P22 stands for the 2D perimeter of objects of two connectivity, 

bw2p4 denotes the 2D perimeter of objects of four connectivity, B33 is the 3D mean breadth of three 

paths, NObw3c6 represents the 3D number of objects of six connectivity, NObw3c18 is the 3D number 

of objects of 18 connectivity, E36 represents the 3D Euler number of objects of six connectivity, E326 

indicates the 3D Euler number of objects of 26 connectivity, and E24 stands for the 2D Euler number 

of objects of four connectivity. 
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Table 7 

The parameter coefficients of Equation (2). 

Parameter coefficient K < 2D K > 2D 

a1 2561.601898 166606.9314 

a2 0 204150.3261 

a3 –107.2069415 –37398.83022 

a4 50.22296765 798.0438519 

a5 –78.44146504 –3913.780701 

a6 –4.48472775 10.4925334 

a7 0 –107437068.7 

a8 0 –263709565.6 

a9 20298580.14 0 

a10 0 184072600.5 

a11 –15481223.59 0 

Predicted permeabilities calculated by Equation (2) versus the reported permeabilities in Table 8 are 

shown in Figures 2 and 3. The proposed equation results can predict the absolute permeability of 

sandstone and carbonate rocks within a different range of permeabilities. The average absolute relative 

error is 0.06, showing that the equation can predict absolute permeability well. 

Table 8 

Reported permeabilities versus those calculated by Equations (2) and (3). 

Sample ID Reported K Calculated K Relative Error 

S1 1969 1968.99 0.00 

S2 4318 3657.08 0.15 

S3 143 142.99 0.00 

S4 273 272.99 0.00 

S5 4638 3456.79 0.25 

S6 11289 11369.76 –0.01 

S7 7268 7682.94 –0.06 

S8 13063 13849.23 –0.06 

S9 2735 3171.73 –0.16 

A1 8272 8403.18 –0.02 

C1 785 784.99 0.00 

C2 38 37.99 0.00 

FA 59000 58769.71 0.00 

FB 52300 51882.9 0.01 

FC 50400 51923.13 –0.03 

Berea 1360 1359.99 0.00 

LA 35300 29310.79 0.17 

LB 31500 31678.31 –0.01 

LC 19400 24160.13 –0.25 

Est 172 171.99 0.00 

Average absolute relative error 0.06 
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Absolute permeability calculation from an approximately large sample compared to the small sample 

in the range of millimeters in laboratory is used wildly. When a small sample is available, pore network 

extraction with the help of proper modeling and application of the Naiver–Stock equation is a good 

solution; however, there are some problems during the network extraction process and assigning pores 

and throats to void spaces. 

 

Figure 2 

The prediction of permeability by Equation (2) when K < 2D versus the reported permeability. 

 

Figure 3 

The prediction of permeability by Equation (2) when K > 2D versus the reported permeability. 

This study introduced an easy way to predict absolute permeability by considering geometric properties. 

An excellent study on finding statistical relationships between geometric properties derived from CT 
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scan results and permeability is presented. However, the applicability of the developed regression 

models to uncored intervals is not limited. When a large plug sample or core is not available and the 

subject only studies tiny rock cuttings, proper precise imaging and the proposed method can be a fast 

and accurate solution. 

The method applicate to permeability calculation is not very expensive since it does not demand 

laboratory typical flooding and only routine CT scan analysis coupled by the equation can evaluate the 

absolute permeability. Researchers look for cost-effective methods to estimate permeability, and the 

introduced method is less expensive than the special core analysis (SCAL) tests such as air injection for 

permeability measurement of plugs. Moreover, the sample remains unchanged after the analysis.  

It appears necessary to compare the result from this studied method with the laboratory results on a 

particular rock as a case study. The point is that the introduced method is applicable to tiny samples that 

can be imaged around 1 mm3, while the smallest plug must put on the core flooding apparatus is around 

10 cm3. Considering the heterogeneity available in all porous media, the laboratory results of a large 

sample are not identical to the results from the tiny images. The new method can efficiently predict the 

permeability of even small drilling cuttings. The next advantage of the method compared to core 

flooding is that the sample remains clean and unchanged after imaging. The disadvantage of the method 

is that micro-CT imaging is expensive, and evaluating the parameter for large images needs a high-

technology processor. 

However, the data set used in this study was gathered by Dong (2008), which is a validated source for 

digital rock researchers. The reported permeability presented in Figures 2 and 3 is extracted from widely 

referred validated data of Dong’s thesis (Dong, 2008) and compared with the calculated permeability. 

The average absolute relative error for the calculated values is 0.06, implying that the new model 

predicts permeability excellently. 

4. Conclusions 

Predicting absolute permeability as a petrophysical property was studied, and an equation was proposed 

using 20 series of micro-CT images. Different properties were selected to conduct this study. Among 

the selected properties, porosity and 3D Euler number of six connectivity have higher correlation 

coefficients when correlated by reported permeabilities. It was found that there was a strong relationship 

between some parameters such as P24 and P22, E24 and E28, bw2p4 and bw2p8, V3 and A2, B313 and 

B33, S313 and S33, and Nobw2c4 and Nobw2c8. Hence, using any pairs of parameters yields the same 

results. The proposed equation with two sets of parameter coefficients excellently predicts the absolute 

permeability using geometric properties. One set is appropriate for permeability values higher than 2 

Darcy, and the other is for cases with a permeability value lower than 2 Darcy for different rock types. 

The equation is applied to 20 series with an average absolute relative error of 0.06. 

When an enough large sample for laboratory core flooding apparatus is not available, imaging is a good 

solution. Further, the newly developed pore network extraction has severe problems regarding pore and 

throat assignment and a relatively high error during solving the applied model parameters; thus, the idea 

introduced herein is to consider geometric properties and evaluate linear regression models to predict 

absolute permeability easily and quickly. Maybe at the first look, the proposed equation has an 

overfitting problem; however, all the studied parameters are not added to the regression analysis as the 

correlation coefficient, and only essential parameters significantly affecting the permeability are 

considered. 
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Nomenclature 

A2 2D area 

B313 The 3D mean breadth of 13 path 

B33 The 3D mean breadth of 3 path 

Bw2a 2D area 

Bw2p4 The 2D perimeter of 4 connectivity 

Bw2p8 The 2D perimeter of 8 connectivity 

Bw3p6 The 3D perimeter of 6 connectivity 

Bw3p18 The 3D perimeter of 18 connectivity 

Bw3p26 The 3D perimeter of 26 connectivity 

CT Computed tomography 

E24 The 2D Euler number of 4 connectivity 

E28 The 2D Euler number of 8 connectivity 

E36 The 3D Euler number of 6 connectivity 

E326 The 3D Euler number of 26 connectivity 

K Absolute permeability 

mm Millimeter 

NObw2c4 The 2D number of objects of 4 connectivity 

NObw2c8 The 2D number of objects of 8 connectivity 

NObw3c6  The 3D number of objects of 6 connectivity 

NObw3c18 The 3D number of objects of 18 connectivity 

NObw3c26 The 3D number of objects of 26 connectivity 

P22 The 2D perimeter of 2 connectivity 

P24 The 2D perimeter of 4 connectivity 

S313 The 3D surface of 13 paths 

S33 The 3D surface of 3 paths 

SCAL Special core analysis 

V3 3D volume 

R Correlation coefficient 

R2 R-squared 
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