Petroleum Engineering – Production
Sara Mohammadzadeh; Nima Mokhtarzadeh; Mohammad Reza Rasaei
Abstract
Rapid development of technologies, their increasing complexity and variety, together with limited organizational resources and efforts for survival in industrial competitions have made the task of appropriate technology selection a major challenge. The present research is aimed at the formulation of ...
Read More
Rapid development of technologies, their increasing complexity and variety, together with limited organizational resources and efforts for survival in industrial competitions have made the task of appropriate technology selection a major challenge. The present research is aimed at the formulation of technology strategy related to oil production in one of the west Karoon oil fields in Iran. At the first, the processes and challenges of production in the studied oil field are recognized by the experts’ survey. Then, the priority of the challenges is evaluated and four key challenges of the considered field are recognized by using a paired comparison questionnaire and Chang Fuzzy AHP. In the next step, the existing and new technologies of oil production in the four recognized key challenges are determined. For each of the recognized technologies, the attractiveness assessment and capability assessment questionnaire are designed based on Jolly indexes and distribute in a sample composed of production engineering experts. Sampling is done by the non-random and purposive-judgmental method. Based on the results of the questionnaires, the attractiveness-capability matrix is designed by Morin’s model, and then based on the obtained technology portfolio, the strategies of each of the four areas are formulated and discussed.
Petroleum Engineering – Production
Hadi Bagherzadeh; Zahra Mansourpour; Bahram Dabir
Abstract
In the current study, the kinetics of asphaltene particle flocculation is investigated under a shear flow through numerical simulation. The discrete element method (DEM) is coupled with computational fluid dynamics (CFD) to model the agglomeration and fragmentation processes. In addition, a coalescence ...
Read More
In the current study, the kinetics of asphaltene particle flocculation is investigated under a shear flow through numerical simulation. The discrete element method (DEM) is coupled with computational fluid dynamics (CFD) to model the agglomeration and fragmentation processes. In addition, a coalescence model is proposed to consider the attachment of colliding particles. The changes in mean asphaltene floc size, the particle size distribution (PSD) of asphaltene flocs over simulation time, and the average fractal dimension are presented. Moreover, the effect of fluid velocity on the kinetics of asphaltene flocculation is examined. The mean asphaltene floc size increases exponentially at first, and then the growth slows; finally, it ceases due to the establishment of a dynamic equilibrium between the agglomeration and fragmentation processes. As expected, asphaltene PSD’s move from fine to coarse sizes during the simulation. Log-normal distribution matches the PSDs best, which is in agreement with the nature of asphaltene. As fluid velocity increases, the dynamic equilibrium is attained more rapidly at a smaller mean floc size and higher average fractal dimension; furthermore, PSDs shift to smaller asphaltene floc sizes. The obtained average fractal dimensions of the asphaltene flocs are in the range of 1.65 to 1.74, which is compatible with the values reported in the literature. Eventually, a semi-analytical model is utilized to fit the simulation results. It is found out that the semi-theoretical model is capable of predicting the evolution of asphaltene particle size appropriately.
Petroleum Engineering – Production
Abdorrahman Mehri Ghahfarrokhi; Ezzatollah Kazemzadeh; Hassan Shokrollahzadeh Behbahani; Gholam Abbas Safian
Abstract
In matrix acidizing operations, the main goal is increasing permeability. For production engineers, it is desirable that acid could be injected into whole [M.N.1] [amehri.gh2] pay zone. Sometimes, this pay zone has a long height and various sub-layers which have different permeability values. ...
Read More
In matrix acidizing operations, the main goal is increasing permeability. For production engineers, it is desirable that acid could be injected into whole [M.N.1] [amehri.gh2] pay zone. Sometimes, this pay zone has a long height and various sub-layers which have different permeability values. To prevent acid from going completely into the most permeable sub-layer, one of the useful techniques is using diverters, and one of the major groups of diverters is gel diverters. Diverter viscosity changes by temperature and pH, and an increase in viscosity leads to a decrease in its permeability; thus, acid can permeate further through less permeable sub-layers. In this study, two kinds of different viscoelastic surfactants (VES) provided by two different companies were used to produce gel to divert acid into a core plug sample having lower permeability in a dual parallel acid injection set-up. The core plug samples were taken from the pay zone of Ahwaz oilfield, one of Iran southwest oilfields. Before performing the injection test, some viscosity measurement tests were carried out. Unfortunately, one of these two VES’s did not have an acceptable quality and failed to pass the injection tests. However, the other one passed all the tests successfully and diverted the injection fluid. The water permeability values of the low-perm and high-perm core plug samples were 0.91 md and 6.4 md respectively, whereas, after injection, they rose to 1.5 and 18.5 md respectively.
Petroleum Engineering – Production
Alimorad Rashidi; Alireza Solaimany Nazar; Hamideh Radnia
Abstract
In this paper, the potentials of using particles, especially nanoparticles, in enhanced oil recovery is investigated. The effect of different nanoparticles on wettability alteration, which is an important method to increase oil recovery from oil-wet reservoirs, is reviewed. The effect of different kinds ...
Read More
In this paper, the potentials of using particles, especially nanoparticles, in enhanced oil recovery is investigated. The effect of different nanoparticles on wettability alteration, which is an important method to increase oil recovery from oil-wet reservoirs, is reviewed. The effect of different kinds of particles, namely solid inorganic particles, hydrophilic or hydrophobic nanoparticles, and amphiphilic nanohybrids on emulsion formation (which is cited as a contributing factor in crude oil recovery) and emulsion stability is described. The potential of nanohybrids for simultaneously acting as emulsion stabilizers and transporters for catalytic species of in situ reactions in reservoirs is also reviewed. Finally, the application of nanoparticles in core flooding experiments is classified based on the dominant mechanism which causes an increase in oil recovery from cores. However, the preparation of homogeneous suspensions of nanoparticles is a technical challenge when using nanoparticles in enhanced oil recovery (EOR). Future researches need to focus on finding out the proper functionalities of nanoparticles to improve their stability under harsh conditions of reservoirs.