Ahad Fereidooni; Masoud Fereidooni; Siyamak Moradi; Ghasem Zargar
Abstract
Enhanced oil recovery using nitrogen injection is a commonly applied method for pressure maintenance in conventional reservoirs. Numerical simulations can be practiced for the prediction of a reservoir performance in the course of injection process; however, a detailed simulation might take up enormous ...
Read More
Enhanced oil recovery using nitrogen injection is a commonly applied method for pressure maintenance in conventional reservoirs. Numerical simulations can be practiced for the prediction of a reservoir performance in the course of injection process; however, a detailed simulation might take up enormous computer processing time. In such cases, a simple statistical model may be a good approach to the preliminary prediction of the process without any application of numerical simulation. In the current work, seven rock/fluid reservoir properties are considered as screening parameters and those parameters having the most considerable effect on the process are determined using the combination of experimental design techniques and reservoir simulations. Therefore, the statistical significance of the main effects and interactions of screening parameters are analyzed utilizing statistical inference approaches. Finally, the influential parameters are employed to create a simple statistical model which allows the preliminary prediction of nitrogen injection in terms of a recovery factor without resorting to numerical simulations.
Edris Junaki; Shima Ghanaatian; Ghasem Zargar
Abstract
A new chemical compound is developed at Petroleum University of Technology to enhance the recovery of the free imbibition process and simultaneously hinder asphaltene precipitation. The compound is tested on heavy oil samples from Marun oil field, Bangestan reservoir. The effects of the chemical compound ...
Read More
A new chemical compound is developed at Petroleum University of Technology to enhance the recovery of the free imbibition process and simultaneously hinder asphaltene precipitation. The compound is tested on heavy oil samples from Marun oil field, Bangestan reservoir. The effects of the chemical compound on viscosity, hydrocarbon composition, and average molecular weight of the heavy oil are investigated. It is found that the substance dramatically reduces oil viscosity and molecular weight and hinders the precipitation of asphaltene in the heavy oil. The results of free imbibition tests demonstrate a significant recovery enhancement after oil reacts with the compound and is used in water in an Amott cell. Finally, the new chemical compound causes a significant reduction in surface tension and contact angle. This is verified by the molecular analysis of heavy oil after reacting with this ionic compound.