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Abstract  

The rate of penetration (ROP) is one of the vital parameters which directly affects the drilling time 

and costs. There are various parameters that influence the drilling rate; they include weight on bit, 

rotational speed, mud weight, bit type, formation type, and bit hydraulic. Several approaches, 

including mathematical models and artificial intelligence have been proposed to predict the rate of 

penetration. Previous research has showed that artificial intelligence such as neural network and 

adaptive neuro-fuzzy inference system are superior to conventional methods in the prediction of 

drilling rate. On the other hand, many complicated analytical ROP models have also been developed 

during recent years that are able to predict drilling rate with a high degree of accuracy. Therefore, 

comparing different approaches to find the most accurate model and assess the conditions in which 

each model works well can be highly effective in reducing drilling time as well as drilling cost. In this 

study, Hareland-Rampersad (HR) model, Bourgoyne and Young (BY) model, and an adaptive-neuro-

fuzzy inference system (ANFIS) are employed to predict the drilling rate in the South Pars gas field 

(SP) offshore of Iran, and their results are compared to find the best ROP-prediction model for each 

formation. A database covering the drilling parameters, sonic log data, and modular dynamic test data 

collected from several drilling sites in SP are used to construct the mentioned models for each 

formation. The results show that when a large amount of data is available, the ANFIS is more accurate 

than the other approaches in predicting drilling rate. In the case of ROP models, BY model works 

considerably better than HR model for the majority of the formations. However, in formations where 

some drilling parameters are constant, but formation strength is variable, HR model shows better 

prediction performance than BY model.  

Keywords: Rate of Penetration (ROP), ANFIS, Bourgoyne and Young, Hareland-Rampersad, 

Simulated Annealing Algorithm (SAA) 

1. Introduction  

The exploration and development of gas and oil fields require the efficient and cost-effective drilling 

of well bores, which can be achieved through the optimization of several variables (Aghajanpour et 
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al., 2017; Alexeyev et al., 2017; Eren, 2010a). The rate of penetration (ROP) is one of the important 

parameters, which should be predicted and optimized to reduce the drilling costs. There are various 

parameters which significantly affect the drilling rate, some of which include formation properties, 

weight on bit, bit rotational speed, bit type, hydraulic, and bit wear; these parameters make drilling 

rate render its behavior non-linear and difficult to predict. 

Several researchers have investigated the effects of drilling parameters on the rate of penetration. 

Bilgesu et al. (1997) modeled the rate of penetration and bit wear using a new neural network under 

various formation types and drilling parameters. In their work, the operational parameters such as 

formation type, torque, weight on bit, rotational speed, and hydraulic horsepower are considered to 

predict drilling rate. Xiangchao Shi et al. (2015) employed a new confined compressive strength 

(CCS) model combined with specific mechanical energy to optimize the operational parameters. Their 

results showed that these parameters could be used to detect efficient drilling situations. Bodaghi et al. 

(2015) established a formulation between drilling variables and the rate of penetration by using 

optimized support vector regression. For this purpose, the genetic and cuckoo search algorithms were 

utilized to optimize the support vector regression. Following this, Ansari et al. (2016) predicted the 

rate of penetration by using a method based on imperialist competitive algorithm. Kahraman (2016) 

predicted the drilling rate by using artificial neural network and a multiple regression method. In 

addition to operational parameters, uniaxial compressive strength, tensile strength, and relative 

abrasiveness were considered as the input variables. Their results showed that the artificial neural 

network was more reliable than multiple regression method to predict the ROP. In a study of 

Khandelwal et al. (2016), multiple regression method, artificial neural network, and hybrid genetic 

algorithm were used to estimate the drilling rate. The comparison of the results showed that the hybrid 

genetic algorithm had better performance in ROP prediction compared to the other models. Yi et al. 

(2014) used a shuffled frog algorithm to obtain optimum values of drilling parameters. Weight on bit, 

bit rotational speed, flow rate, and bit tooth wear are some of the variables considered in their study. 

Jiang et al. (2016) combined an artificial neural network and ant colony optimization (ACO) to 

acquire optimum values for drilling rate. They considered the weight on bit, rotational speed, flow 

rate, and gamma ray as the input variables. Xian Shi et al. (2016) used an extreme learning machine, 

an upper-layer solution aware model, and an artificial neural network to predict drilling rate. Their 

results indicated that all of these methods can be an appropriate method to predict the drilling rate. 

Hegde et al. (2015) predicted the rate of penetration by using statistical learning techniques such as 

trees, bagged trees, and random forests; these techniques were used for a data set with nine predictors. 

Khosravanian et al. (2016) used the fuzzy inference systems (FIS) of Sugeno and Mamdani to predict 

the weight on bit. According to their results, Sugeno-type FIS is more accurate than Mamdani-type 

FIS in the prediction of weight on bit. Moraveji et al. (2016) investigated the effect of six variables on 

ROP. They used response surface methodology to develop a mathematical relation between drilling 

rate and drilling parameters such as depth, weight on bit (WOB), RPM, jet impact force, yield point to 

plastic viscosity ratio, and 10 min-to-10 s gel strength ratio. They used bat algorithm to optimize 

drilling parameters to reach the maximum ROP. Their results showed that this model provided an 

efficient tool for the prediction and optimization of drilling rate. Monazami et al. (2012) utilized ANN 

for the prediction of ROP in one of Iranian oil fields. Their results showed that ANN is a useful tool 

for the prediction of ROP, especially when the relationships between drilling parameters and ROP are 

too complicated.  

Arabjamaloei et al. (2011) used ANN to predict the drilling rate in one of the Iranian oil fields, and 

they then optimized the drilling parameters using genetic algorithm to achieve the maximum drilling 

rate. There was good agreement between their results and the real field data, indicating that the ANN 
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was able to predict the drilling rate accurately. Basarir et al. (2014) compared the performance of 

linear regression, non-linear regression, and ANFIS for the prediction of ROP. Their results showed 

that ANFIS is the most accurate method compared to the regression methods. The previous researches 

proved that the ANN is able to predict the ROP and other parameters such as permeability, minimum 

miscibility pressure, and stuck pipe when a large data set is available (Afshari et al., 2014; Ahmadi et 

al., 2012, 2013; Arabjamaloei et al., 2011; Asoodeh et al., 2015; Monazami et al., 2012; Rabiei et al., 

2015; Hedayat Rahimzadeh et al., 2010; Shadizadeh et al., 2010; Zoveidavianpoor et al., 2013b). 

Since ANFIS is a combination of artificial neural network and fuzzy logic (Zoveidavianpoor et al., 

2013a), it is expected that its results are more accurate than ANN in cases which a low amount of data 

exists (Basarir et al., 2014). Therefore, in this study, based on the number of available data, ANFIS is 

utilized to predict ROP. 

Clearly, several approaches have been employed to predict the drilling rate and to optimize the 

drilling parameters to various degrees of accuracy in recent years (Hedayat Rahimzadeh et al., 2010). 

It is worth noting that the accuracy of these approaches depends on various parameters such as 

drilling condition, drilling variables, and the number of data points they incorporate. Selecting the 

most accurate approach for predicting the drilling rate can be extremely beneficial to reducing the 

drilling time as well as drilling costs. 

In this study, Hareland-Rampersad (HR) model and Bourgoyne and Young (BY) model, which are the 

most widely used ROP models, together with an adaptive-neuro-fuzzy-inference system (ANFIS) are 

used to predict the ROP in the South Pars (SP) gas field offshore of Iran. Their results are compared 

to find the most proper model for each formation and to assess the conditions in which each model 

works well.  

2. Field information and data analysis 

SP gas field consists of various phases, and the drilling data of one of these phases have been used in 

this study. Due to confidentiality purposes, the name of the field development phase and specific well 

numbers cannot be disclosed. The geological formations penetrated by the wells of the SP phase 

studied, in order of the shallowest to the deepest, consist of the Asmary, Ilam, Sarvak, Upper 

limestone, Dashtak, Surmeh, and Kangan.  

All the information, which are required to construct ROP models for each formation, have been 

extracted from the daily mud logging reports (DMLR), modular dynamic test (MDT), and sonic log 

data. The extracted drilling data include drilling rate, weight on bit (WOB), rotational speed (RPM), 

pump flow rate, mud weight, bit type, and bit wear. Modular dynamic test and sonic log data are used to 

estimate the pore pressure and uniaxial compressive strength respectively. The overall data set consists 

of 721 records divided randomly into two parts, in which 70% (504 data records) of the overall data are 

used to construct (train) the model, and the remaining 30% (217 data records) are employed to test the 

developed model. All the data used herein are displayed graphically in Figures 1-2.  



76 Iranian Journal of Oil & Gas Science and Technology, Vol. 7 (2018), No. 3 

 

 
 

  

Figure 1 

Drilling data extracted from daily drilling reports of one of the wells. 
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Figure 2 

Drilling data extracted from daily drilling reports, pore pressure, and modular dynamic test data. 
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3. Bourgoyne and Young (BY) model 

Several models have been suggested to predict the rate of penetration. The model established by 

Bourgoyne and Young (Bourgoyne Jr. et al., 1974) is one of the most complete drilling models used 

for roller cone bits (Nascimento et al., 2015). They suggested using eight functions to model the 

influence of different drilling parameters such as weight on bit, rotary speed, bit wear, formation 

strength, and jet impact force. Bourgoyne-Young drilling model is defined by Equation 1: 

𝑅𝑂𝑃 = (𝑓1)(𝑓2)(𝑓3)(𝑓4)(𝑓5)(𝑓6)(𝑓7)(𝑓8) (1) 

where, 

𝑓1 = 𝑒2.303𝑎1 (2) 

𝑓2 = 𝑒2.303𝑎2(10000−𝐷) (3) 

𝑓3 = 𝑒2.303𝑎3𝐷0.69(𝑃𝑝−9) (4) 

𝑓4 = 𝑒2.303𝑎4𝐷(𝑃𝑝−𝐸𝐶𝐷) (5) 

𝑓5 = [

𝑊𝑂𝐵
𝑑𝑏

− (
𝑊𝑂𝐵
𝑑𝑏

)
𝑡

4 − (
𝑊𝑂𝐵
𝑑𝑏

)
𝑡

]

𝑎5

 (6) 

𝑓6 = ⌈
𝑁

60
⌉
𝑎6

 (7) 

𝑓7 = 𝑒−𝑎7ℎ (8) 

𝑓8 = ⌈
𝐹𝑗

1000
⌉
𝑎8

 (9) 

in which, D (ft.) is the true vertical-well depth, and 𝑃𝑝 (lbm/gal) represents the pore-pressure gradient; 

𝐸𝐶𝐷 (lbm/gal) is the equivalent circulating density, and (
𝑊𝑂𝐵

𝑑𝑏
)
𝑡
 (1000 lbf/in) stands for the threshold 

bit weight per inch of bit diameter at which the bit begins to drill; h is the fractional tooth wear; 𝐹𝑗 

(lbf) denotes the hydraulic impact force beneath the bit, and 𝑎1 through 𝑎8 are the constants which 

must be chosen on the basis of local drilling conditions. All the information required to construct this 

model for each formation is extracted from daily mud logging reports (DMLR) and modular dynamic 

test (MDT) data. The multiple regression method is utilized to determine the model constants (𝑎1 

through 𝑎8) for each formation. Initially, Bourgoyne and Young model needs to be expressed in a 

linear form; the linear form is obtained by taking the natural logarithms of both sides of Equation 1. 

Equation 10 shows the linear form of the BY model. Table 1 lists the values of  𝑋2 to  𝑋8 in the linear 

form of Bourgoyne and Young model. 

𝑌 = 𝐿𝑛(𝑅𝑂𝑃) = 𝐾𝑠 + 𝑎1𝑋1 + 𝑎2𝑋2 + 𝑎3𝑋3 + 𝑎4𝑋4 + 𝑎5𝑋5 + 𝑎6𝑋6 + 𝑎7𝑋7 (10) 
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Table 1 

Coefficients of linear form of Bourgoyne and Young model. 

Characteristic Variable Amount 

Normal compaction parameter 𝑋1 2.303 ∗× (10000 − 𝐷) 

Under compaction parameter 𝑋2 2.303 × 𝐷0.69 × (𝑔𝑝 − 9) 

Pressure differential parameter 𝑋3 2.303 × 𝐷 ∗ (𝑔𝑝 − 𝜌) 

Bit weight parameter 𝑋4 𝐿𝑛 (
(
𝑊
𝑑

) − (
𝑊
𝑑

)
𝑡

4 − (
𝑊
𝑑

)
𝑡

) 

Rotary speed parameter 𝑋5 𝐿𝑛 (
𝑁

60
) 

Tooth wear parameter 𝑋6 −ℎ 

Hydraulic parameter 𝑋7 𝐿𝑛 (
𝐹𝑗

1000
) 

The 𝑋 and 𝑌 values (Equation 10) are then determined using the data set. The general form of 

multiple-linear regression (MLR) for a problem with k constants is as shown in Equation 11, where 𝑛 

is the number of the data records involved (Eren, 2010b). By solving this matrix, the constants can be 

determined: 

[
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 (11) 

Multiple-linear regression is an accurate method for determining the constant coefficients of a model, 

but sometimes, because of the quality of the existing data (e.g. anomalous data points in certain data 

records), it leads to meaningless constants (e.g. calculating negative ROP’s), especially when applied 

to Bourgoyne and Young model. In this situation, the abnormal data points need to be removed from 

the data set. In addition, there are some numerical methods for determining the constant coefficients. 

In this study, the simulated annealing algorithm was utilized to determine Bourgoyne and Young 

model constants when MLR leads to meaningless constants.  

Simulated annealing algorithm 

In 1983, Kirkpatrick et al. (1983) successfully used the simulation of physical annealing in 

optimization. The parameters of simulated annealing algorithm (SAA) include the design variables 

(X0); the energy state (E(X0)),which is equivalent to the objective function; the initial temperature (T0); 

the freezing temperature (Tf); the length of Markov chain (L); and temperature decrement factor (α) 
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(Granville et al., 1994). SAA uses a Metropolis criterion to escape from local optimum point and to 

have a better chance to obtain the global optimum point. The acceptance probability of the Metropolis 

criterion is as follows (Metropolis et al., 1953). 

𝑃 = 𝑒𝑥𝑝 (−
∆𝐸

𝑇
) (12) 

Figure 3 shows the flowchart of the simulated annealing algorithm. 

 

Figure 3 

Flowchart of the simulated annealing algorithm (Wang et al., 2016). 

As shown in Figure 3, step 1 determines the algorithm parameters. Because there is no direct way, a 

trial and error approach is used to determine the best algorithm parameters. Second, in step 2, a 

random set of constant coefficients is generated. Thirdly, using these constants, the ROP values are 

calculated, and the RMSE1 for all the data set is determined using Equation 13. Fourthly, a 

neighboring set of constant coefficients is generated in step 4, and the RMSE2 is determined for this 

new solution. In the fifth place, If RMSE2 is lower than RMSE1, the new solution is considered as the 

best solution, otherwise if P (Solution) > Random (0~1), the solution 2 is then considered as the best 
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solution. Finally, the temperature decreases (𝑇𝑁𝑒𝑤 = 𝛼 × 𝑇𝐶𝑢𝑟𝑟𝑒𝑛𝑡), and the process returns to step 4. 

The process is repeated until the freezing temperature is met.  

In this study, objective function is considered as the root mean square error (RMSE). The RMSE is 

calculated using Equation 13. 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑅𝑂𝑃𝑟𝑒𝑎𝑙 − 𝑅𝑂𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)

2
𝑛

𝑖=1

 (13) 

Bourgoyne and Young recommended lower bound and upper bound for each of the eight coefficients. 

Table 2 contains recommended bounds for each of the constants (Bourgoyne et al., 1991; H 

Rahimzadeh et al., 2011). 

Table 2 

Recommended bounds for each of the constant coefficient of Bourgoyne and Young model (Bourgoyne et al., 

1991; H Rahimzadeh et al., 2011). 

Coefficients Lower bound Upper bound 

𝑎1 0.5 1.9 

𝑎2 0.000001 0.0005 

𝑎3 0.000001 0.0009 

𝑎4 0.000001 0.0001 

𝑎5 0.5 2 

𝑎6 0.4 1 

𝑎7 0.3 1.5 

𝑎8 0.3 0.6 

Using a trial and error approach, the best parameters of the SAA are determined. Table 3 contains the 

algorithm parameters used herein. 

Table 3 

The best algorithm parameters. 

No. SAA parameters Value 

1 T0 1000 

2 Α 0.925 

3 Length of Markov chain 8 

4 Tf 0.0002 

Figure 4 shows the performance of the simulated annealing algorithm for determining the constant 

coefficients of Bourgoyne and Young model in Surmeh formation. It shows that the determined 

constants can predict the ROP with an RMSE value equal to 2.97318. The second diagram shows the 

determined constant coefficients, and the third diagram displays the final temperature. It shows that 

the algorithm stops when the temperature reaches the freezing temperature. 
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Figure 4 

Performance of the simulated annealing algorithm for determining Bourgoyne and Young model in Surmeh 

formation. 

The calculated constants are summarized in Table 4. When SAA is used for determining the constant 

coefficients of mathematical models, sometimes after each run, a set of completely different constants 

is obtained. In this situation, the parameters of the algorithm must be changed to reach the global 

optimum. The measured and predicted drilling rates for each formation are depicted in Figure 5.  

Table 4 

Bourgoyne and Young model constants for each formation. 

Formation 
1

a  2
a  3

a  4
a  5

a  6
a  7

a  8
a  

Asmary 1.535 0.000075 0.000002 0.0001 0.595 0.94 0.895 0.49 

Ilam 1.125 0.000101 0.000459 0.000002 0.5 0.405 1.4999 0.595 

Sarvak 1.289 0.000079 0.000002 0.000002 0.505 0.98 0.3067 0.435 

Upper limestone 1.259 0.00001 0.000043 0.000002 0.865 1 0.305 0.595 

Dashtak 1.329 0.000044 0.00012 0.000002 0.505 0.95 0.301 0.3046 

Surmeh 1.831 0.000021 0.0001 0.000001 0.619 0.516 0.375 0.342 

Kangan 1.525 0.000001 0.000001 0.000001 0.79 0.995 0.303 0.410 

 



H. Yavari et al. / Application of an Adaptive Neuro-fuzzy Inference System … 83 

 

  

  

  

R² = 0.4774 

0

10

20

30

40

50

60

70

0 20 40 60

P
re

d
ic

te
d

 d
ri

ll
in

g
 r

a
te

 (
m

/h
r.

) 

Measured drilling rate (m/hr.) 

Asmary formation 

R² = 0.4563 

0

2

4

6

8

10

12

14

16

18

20

0 10 20

P
re

d
ic

te
d

 d
ri

ll
in

g
 r

a
te

 (
m

/h
r.

) 

Measured drilling rate (m/hr.) 

Ilam formation 

R² = 0.7149 

0

10

20

30

40

50

0 20 40 60

P
re

d
ic

te
d

 d
ri

ll
in

g
 r

a
te

 (
m

/h
r.

) 

Measured drilling rate (m/hr.) 

Sarvak formation 

R² = 0.7905 

0

5

10

15

20

25

30

35

0 10 20 30 40

P
re

d
ic

te
d

 d
ri

ll
in

g
 r

a
te

 (
m

/h
r.

) 

Measured drilling rate (m/hr.) 

Upper limestone 

R² = 0.7074 

0

5

10

15

20

25

0 10 20 30

P
re

d
ic

te
d

 d
ri

ll
im

g
 r

a
te

 (
m

/h
r.

) 

Measured drilling rate (m/hr.) 

Dashtak formation 

R² = 0.6643 

0

2

4

6

8

10

12

14

16

0 5 10 15 20

P
re

d
ic

te
d

 d
ri

ll
in

g
 r

a
te

 (
m

/h
r.

) 

Measured drilling rate (m/hr.) 

Surmeh formation 



84 Iranian Journal of Oil & Gas Science and Technology, Vol. 7 (2018), No. 3 

 

 

 

Figure 5 

Measured versus predicted drilling rate for each formation by Bourgoyne and Young model. 

4. Hareland-Rampersad (HR) model 

In 1994, Hareland and Rampersad established a model to predict the drilling rate. This model is 

derived using the conservation of mass where the rate of cutting removal is equivalent to the rate of 

penetration (Hareland et al., 1994). The general form of the model for completely efficient bit 

cleaning is as follows: 

𝑅𝑂𝑃 = 𝑊𝑓 (
𝐺 ∙ 𝑊𝑂𝐵𝛼 ∙ 𝑅𝑃𝑀𝛾

𝐷𝐵𝑖𝑡 ∙ 𝜎
) (14) 

where, ROP (ft./hr.) is the predicted rate of penetration, and WOB (lb.) is weight on bit; RPM is the 

rotary speed of bit in revolution per minute; G stands for a constant coefficient which is related to bit 

type and blade geometry, and 𝐷𝐵𝑖𝑡 (in) denotes bit diameter; 𝜎 (psi) is the uniaxial compressive 

strength (UCS) of the rock, and 𝑎 and 𝛾 are model constants; 𝑤𝑓 indicates the wear function. Wear 

function calibrates the ROP for a worn bit. The wear function is calculated using Equation 15 as a 

function of cumulative bit wear. The cumulative bit wear is a function of applied RPM and WOB, 

rock strength, and length of drilling interval: 

𝑊𝑓 = 1 − (1 −
∆𝐵𝐺

8
)
𝑤

 (15) 

where, ΔBG is the IADC bit dull grading estimated by Equation 16: 

∆𝐵𝐺 = 𝐶𝑎 ∙ ∑𝑅𝑃𝑀𝐶1 ∙ (
𝑊𝑂𝐵

1000
)
𝐶1

∙ (
𝜎

1000
) ∙ 𝑥𝑖

𝑛

𝑖=1

 (16) 

In above equation, 𝐶𝑎 represents the bit wear coefficient and is a function of the durability of PDC 

layer material and the relative hardness of the cutters with respect to the PDC layer material (Liu et 

al., 2014). 𝑐1 and 𝑐2 are model constants, and 𝑥𝑖 is the length of drilling interval in feet. By assuming 

a linear relation for the bit wear function, 𝑤𝑓 is given by (Hedayat Rahimzadeh et al., 2010): 
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𝑊𝑓 = 1 − (
∆𝐵𝐺

8
) (17) 

where,  

∆𝐵𝐺 = 𝐶𝑎 ∙ ∑𝑅𝑃𝑀 ∙ (
𝑊𝑂𝐵

1000
) ∙ (

𝜎

1000
) ∙ 𝑥𝑖

𝑛

𝑖=1

 (18) 

In this model, the uniaxial compressive strength of the rock is obtained using empirical correlations 

which are a function of bulk density and sonic wave transit time. The same data set, which is used to 

construct Bourgoyne and Young model, is utilized to obtain Hareland model constants in each 

formation. For the calculation of 𝐶𝑎, the summation term in Equation 18 is calculated using drilling 

data extracted from MLDR; then, the IADC bit dull grading term is divided by that summation to 

provide the value of 𝐶𝑎. In addition, Hareland-Rampersad model has three constants; for determining 

these constants, the model needs to be linearized. The linear form of the HR model is written by 

Equations19-20. The formulas for calculating the HR coefficients of 𝑋 and 𝑌 are given in Table 5. 

𝑌 = 𝑎1 + 𝑎2𝑋1 + 𝑎3𝑋2 (19) 

𝐿𝑛 (
𝑅𝑂𝑃.𝐷𝐵𝑖𝑡 . 𝜎

𝑊𝑓
) = 𝐿𝑛(𝐺) + 𝛼𝐿𝑛(𝑊𝑂𝐵) + 𝛾𝐿𝑛(𝑅𝑃𝑀) (20) 

Table 5 

Coefficients of linear form of Hareland-Rampersad model. 

Characteristic Variable Amount 

Drilling rate parameter Y 𝐿𝑛 (
𝑅𝑂𝑃. 𝐷𝐵𝑖𝑡 . 𝜎

𝑊𝑓

) 

Weight on b parameter X1 𝐿𝑛(𝑊𝑂𝐵) 

Rotary speed parameter X2 𝐿𝑛(𝑅𝑃𝑀) 

Constant coefficient 𝑎1 𝐿𝑛(𝐺) 

Then, 𝑋 and 𝑌 values are determined using the data set, so MLR matrix is constructed. By solving the 

MLR matrix, the constants are determined. When MLR leads to negative constants, SAA can be 

employed to determine the constants. Table 6 contains the recommended ranges of Hareland-

Rampersad model constants. 

Table 6 

Recommended bounds of Hareland-Rampersad model constants. 

Coefficients Lower bound Upper bound 

𝐺 0.1 100 

𝛼 0.5 1.5 

𝛾 0.5 1.5 

The model constants for each formation are summarized in Table 7. Figure 6 shows the measured and 

predicted drilling rate acquired by Hareland model with the best fit line and 𝑅2 values for different 

formations of the SP gas field. 
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Table 7 

Hareland model constants for each formation. 

Formation G α ɣ 
a

C  

Asmary 0.00521673 1.3982 0.9025 1.53E-6 

Ilam 53.489 0.5858 0.9887 3.4E-7 

Sarvak 7.198 0.6113 1.2944 1.72E-7 

Upper limestone 50.436 0.7473 0.7163 9.32E-8 

Dashtak 50.6 0.5944 1.0074 3.06E-8 

Surmeh 54.535 0.6948 0.8687 6.11E-8 

Kangan 53.425 0.79568 0.63118 1.68E-8 
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Figure 6 

Measured versus predicted drilling rate for each formation by Hareland model. 

Artificial intelligence models 

Previous researches proved that ANN can predict ROP accurately within the range of input data when 

a large data set is available. Table 8 contains the drill-off test data of Surmeh formation in a 12.25 

inch hole section which was drilled with a PDC bit. The mud weight and flowrate were equal to 9.6 

ppg 870 gpm respectively. The ANN and ANFIS are employed to construct a model for the prediction 

of ROP using the drill-off test data. 

Table 8 

Drill-off test data of Surmeh formation. 

WOB (klb) 5 8 11 13 14 15 17 14 14 14 14 

RPM (rpm) 180 180 180 180 180 180 180 190 200 210 220 

ROP (m/hr.) 5.5 9.12 13.46 14 14.21 13.5 13.09 15.31 16.5 17.35 18 
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The WOB and RPM are considered as the input variables, and ROP is the output of the model. The 

available data sets consisted of 80% for the pure network learning process, 10% for validation, and 

10% for testing purposes. A two-layered feed-forward back propagation algorithm with 10 neurons in 

the hidden layer is used. The Levenberg-Marquardt (LM) algorithm is selected for training the 

network. Figure 7 shows the structure of the designed ANN model. 

 

Figure 7 

Structure of the suggested ANN for the prediction of ROP. 

Figure 8 shows the relationship between WOB, RPM, and ROP using the constructed ANN model. As 

it is seen, the ANN is able to predict the ROP only within the range of the input data, and when there 

is not enough input data with a sufficient distribution, it cannot be used as a reliable model for the 

prediction of ROP. 

 

Figure 8 

Relationship between WOB, RPM, and ROP using the designed ANN model. 

Following this, ANFIS is used to construct a model for the prediction of ROP using the drill-off test 

data. WOB and RPM are the input variables, and ROP is the output of the model. The data used to 

construct the ANFIS are the same as ANN: 80% for training, 10% for testing, and 10% for checking 

purposes. The type of membership functions is selected as a Gaussian curve, and three membership 

functions are chosen for each linguistic variable. Figure 9 shows the structure of the designed ANFIS 

model.  
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Figure 9 

Structure of the designed ANFIS model for the prediction of ROP. 

Figure 10 shows the relationship between WOB, RPM, and ROP using the designed ANFIS model. It is 

noticeable that ANFIS has better performance than ANN in a way that it can be used as a reliable model 

for the prediction of ROP when a few numbers of input data with a sufficient distribution are available. 

 

Figure 10 

Relationship between WOB, RPM, and ROP using the designed ANFIS model. 
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It can be concluded that in cases in which a vast amount of data set are not available, using ANFIS 

instead of ANN can lead to more accurate and reliable results. 

5. Theoretical basis and justification for ANFIS applied to ROP prediction models 

The models which are based on fuzzy-inference system use linguistic terms and if-then rules instead 

of numerical terms. Linguistic variables have their values expressed as words or sentences of natural 

language describing degrees of membership. A fuzzy set, which belongs to these linguistic variables, 

is an extension of a crisp set where each element can have binary membership, i.e., full membership 

or no membership. However, fuzzy sets allow partial membership in which an element can partially 

belong to one or more than one set (Nedjah et al., 2005). In other words, in a crisp set, the 

membership level of x elements in set A can be expressed by the membership function 𝜇𝐴(𝑥), such 

that if: 

𝜇𝐴(𝑥) = {
1      𝑖𝑓 𝑥 ∈ 𝐴     𝑖𝑚𝑝𝑙𝑦𝑖𝑛𝑔 𝑓𝑢𝑙𝑙 𝑚𝑒𝑚𝑏𝑒𝑟𝑠ℎ𝑖𝑝
0     𝑖𝑓  𝑥 ∉ 𝐴     𝑖𝑚𝑝𝑙𝑦𝑖𝑛𝑔 𝑛𝑜𝑛 − 𝑚𝑒𝑚𝑏𝑒𝑟𝑠ℎ𝑖𝑝

 (21) 

where, for fuzzy set A, membership function 𝜇𝐴(𝑥) has values between 0, 1. 

In ANFIS, input data are converted to fuzzy input by membership functions. Following this, fuzzy 

inputs are entered into the neural network block. This block is connected to an inference engine which 

includes a rule base. A back-propagation algorithm is used to train the inference engine and to 

determine appropriate rules that can reproduce meaningful dependent variable values. After training, 

the rules generated are applied to the dataset from the neural network to yield the optimum output. 

Then, the output which is obtained from the neural network block is converted into crisp values by a 

defuzzification algorithm (Sugeno et al., 1988). This analytical sequence is shown in Figure 11. There 

are five layers in the structure of neuro-fuzzy system; these layers are fuzzification, rules, 

normalization, defuzzification, and output as shown in Figure 12. Each of these layers includes nodes, 

which processes the fuzzy inputs. Since the ANFIS only allows one model output, the outputs of these 

nodes are combined to yield a single crisp output. Then, the derived output is reentered as an input to 

the model and compared with the actual set value. If there is any deviation, the error signal is 

generated and becomes the input to the next iteration of the ANFIS model. Following a series of 

iterations, results converge to a stable system with minimal errors between the predicted and 

measured values (Mathur et al., 2016). 

The Takagi, Sugeno, and Kang (TSK) fuzzy inference system is used to construct the ANFIS model, 

which consists of two rules (Sugeno et al., 1988). The TSK ROP model involves two inputs WOB and 

RPM, one output ROP, and fuzzy sets 𝐴1. 𝐴2. 𝐵1. 𝐵2 . 𝐴 and 𝐵 are fuzzy sets of variables WOB and 

RPM respectively. In the ANFIS model, the relation between the inputs and output is expressed by the 

following If-Then rules: 

Rule 1: 𝑖𝑓 𝑊𝑂𝐵 𝑖𝑠  𝐴1 𝑎𝑛𝑑 𝑅𝑃𝑀 𝑖𝑠 𝐵1;  𝑡ℎ𝑒𝑛  𝑅𝑂𝑃1 = 𝑝1 𝑊𝑂𝐵 + 𝑞1 𝑅𝑃𝑀 + 𝑟1   

Rule 2: 𝑖𝑓 𝑊𝑂𝐵 𝑖𝑠  𝐴2 𝑎𝑛𝑑 𝑅𝑃𝑀 𝑖𝑠 𝐵2;  𝑡ℎ𝑒𝑛  𝑅𝑂𝑃2 = 𝑝2 𝑊𝑂𝐵 + 𝑞2 𝑅𝑃𝑀 + 𝑟2  

where, 𝑝1 , 𝑞1 , 𝑟1 , 𝑝2 , 𝑞2 , and 𝑟2  are consequent parameters.  𝐴1. 𝐴2. 𝐵1. 𝐵2  are the fuzzy sets which 

represent the linguistic labels. Each layer in the ROP ANFIS model consists of the following node 

functions: 

Layer 1: This layer is the fuzzification layer. In this layer, the crisp value enters into node 𝑖 which is 

converted into a fuzzy value associated with fuzzy set  𝐴𝑖 or  𝐵𝑖. Then, the membership level of this 
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input is determined by a membership function of the respective fuzzy set. The output of each node is 

calculated by using the following equations: 

𝑂1.𝑖 = 𝜇𝐴𝑖(𝑊𝑂𝐵)    𝑓𝑜𝑟 𝑖 = 1. 2 (22) 

𝑂1.𝑖 = 𝜇𝐵𝑖(𝑅𝑃𝑀)    𝑓𝑜𝑟 𝑖 = 1. 2 (23) 

Layer 2: This layer is the first rule layer. The nodes of this layer are fixed, and they multiply the 

membership levels of all the inputs according to each rule as follows: 

𝑂2.𝑖 = 𝑤𝑖 = 𝜇𝐴𝑖(𝑊𝑂𝑀)𝜇𝐵𝑖(𝑅𝑃𝑀)    𝑓𝑜𝑟 𝑖 = 1. 2 (24) 

where, 𝑂2.𝑖 denotes the output of layer 2, and 𝑤𝑖 is the firing strength. In this layer, each node 

calculates the firing strength of each rule via multiplication, and the rule which has the high firing 

strength matches the input data. The number of nodes is equal to the number of rules in this layer.  

Layer 3: This layer is the second rule layer. In this layer, each node calculates the ratio of firing 

strength of each rule to the sum of all rules. The firing strength is calculated by: 

𝑂3.𝑖 = 𝑤𝑖= 
𝑤𝑖

𝑤1+𝑤2
    𝑓𝑜𝑟 𝑖 = 1. 2 (25) 

where, 𝑤𝑖  represents normalized firing strength. 

Layer 4: This layer is the defuzzification layer. The node function in this layer is calculated as follows: 

𝑂4.𝑖 = 𝑤𝑖 × 𝑅𝑂𝑃𝑖 = 𝑤𝑖 × (𝑝𝑖 𝑊𝑂𝐵 + 𝑞𝑖 𝑅𝑃𝑀 + 𝑟𝑖)   𝑓𝑜𝑟 𝑖 = 1. 2 (26) 

where, 𝑤𝑖 is normalized firing strength calculated from layer 3, and 𝑅𝑂𝑃𝑖 can be a polynomial 

function or constant number. {𝑝𝑖. 𝑞𝑖. 𝑟𝑖} is a consequent parameter set for rule 𝑖 (Jang, 1993).  

Layer 5: This layer is the output layer. It only has one node, and this node calculates the sum of the 

output of all the nodes from layer 4 to produce the overall ANFIS output as reads: 

𝑜𝑣𝑒𝑟𝑎𝑙𝑙 𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑂5.𝑖 = ∑𝑤𝑖𝑅𝑂𝑃𝑖

𝑖

=
∑ 𝑤𝑖𝑅𝑂𝑃𝑖𝑖

∑ 𝑤𝑖𝑖
   𝑓𝑜𝑟 𝑖 = 1. 2 (27) 

This ROP ANFIS model developed using the training data subset is then used to predict the rate of 

penetration for each data set record of the test subset so as to determine its accuracy.  

 

Figure 11 

A high-level schematic for the sequence involved in a fuzzy neural network (Mathur et al., 2016). 
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Figure 12 

ANFIS architecture involving two rules and two inputs. 

5.1 Prediction of drilling rate by ANFIS 

The same data set which is used for the two previous mathematical ROP models (i.e., BY and HR 

models) is utilized to construct the ANFIS model. After the classification of the data set, the ANFIS 

model is trained using MATLAB software. The Takagi, Sugeno and Kang (TSK) fuzzy inference 

system is used to construct the ANFIS model, and a hybrid rule algorithm is utilized to train the 

adaptive network. Model inputs include depth, weight on bit, rotational speed, flow rate, mud weight, 

pore pressure, and bit wear, and the only output is the rate of penetration. In the developed model, 

three-membership functions are considered for each input data record. The type of membership 

functions is trimf membership function which consists of three constants. The linguistic expressions 

for the input data, except for bit type, are low (L), moderate (M), and high (H). These linguistic labels 

state the relation between the input and output data via fuzzy If-Then rules. The linguistic labels and 

corresponding membership functions for the Sarvak formation are summarized in Table 9. 

In this study, If-Then rules are created according to the relationship between the input and output for 

each record of the training subset of the data set. The created rule-base contains 2187 rules, and a 

sample of these rules is given by: 

Rule 1: 

𝑖𝑓 𝐷𝑒𝑝𝑡ℎ 𝑖𝑠 𝐿 𝑎𝑛𝑑 𝑊𝑂𝐵 𝑖𝑠 𝐻 𝑎𝑛𝑑 𝑅𝑃𝑀 𝑖𝑠 𝐻 𝑎𝑛𝑑 𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒 𝑖𝑠 𝐻 𝑎𝑛𝑑 𝑚𝑢𝑑 𝑤𝑒𝑖𝑔ℎ𝑡 𝑖𝑠 𝐿  

𝑎𝑛𝑑 𝑝𝑜𝑟𝑒 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑖𝑠 𝐿 𝑎𝑛𝑑 𝑏𝑖𝑡 𝑤𝑒𝑎𝑟 𝑖𝑠 𝐿, 𝑡ℎ𝑒𝑛 𝑅𝑂𝑃1 = 𝑓(𝑑𝑒𝑝𝑡ℎ.𝑊𝑂𝐵 …) 𝑖𝑠 𝐻 

The last step is defuzzification and drilling ROP is converted from a fuzzy expression into a crisp 

value. A plot of the predicted and measured penetration rates together with the best fit line and 

correlation coefficient (𝑅2) values for testing data set is given in Figure 13. 
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Table 9 

Linguistic labels and corresponding membership functions for the Sarvak formation. 

Parameter Linguistic term 
Parameters of membership function 

𝒂 𝒃 𝒄 

TVD 

Low 827.5 995 1162.5 

Moderate 995 1162.5 1330 

High 1162.5 1330 1497.5 

WOB 

Low -2.45 4.6 11.65 

Moderate 4.6 11.65 18.7 

High 11.65 18.7 25.75 

RPM 

Low 8.5 85 161.5 

Moderate 85 161.5 238 

High 161.5 238 314.5 

Flow rate 

Low 2718.5 3312 3905.5 

Moderate 3312 3905.5 4499 

High 3905.5 4499 5092.5 

Mud weight 

Low 9.41 9.41 9.41 

Moderate 9.41 9.41 9.41 

High 9.41 9.41 9.41 

Pore pressure 

Low 8.51 8.51 8.51 

Moderate 8.51 8.51 8.51 

High 8.51 8.51 8.51 

Bit wear 

Low -0.101 0.0161 0.1332 

Moderate 0.0161 0.1332 0.2503 

High 0.1332 0.2503 0.3674 
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Figure 13 

Measured versus predicted drilling rate for each formation applying the ANFIS ROP model. 
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6. Model performance analysis  

According to the results obtained by the ANFIS model, this model has the least amount of error 

compared to Bourgoyne and Young and Hareland-Rampersad models; its average error is less than 

10% in all the studied formations. Therefore, the ANFIS ROP model can be considered as the most 

appropriate tool to predict the drilling ROP. Figure 14 shows the measured and predicted values of 

ROP using the three different models evaluated. In addition, the amount of the residual error for each 

of the developed models is shown in Figure 15. Clearly, the residual errors yielded by the ANFIS 

ROP model are lower than the ones of the other two widely used ROP models. In other words, the 

deviation of the predicted values from the measured values is less in ANFIS. Analytical models 

consider the effect of a limited number of parameters to predict the drilling rate. On the other hand, 

there is no limitation for the number of input variables in ANFIS, and the effect of any variables on 

drilling ROP can be considered and included. For this reasons, ANFIS has the best performance in all 

the studied formations.  

It is worth noting that the artificial intelligence systems such as adaptive-neuro-fuzzy-inference 

system work better than other approaches when a large amount of data exists. In situations where a 

large number of data records are not available to train such models, conventional mathematical 

methods are likely to be superior to inference systems. On the other hand, ANFIS can predict ROP 

accurately within the range of input data, but it is not able to predict the ROP beyond the range of 

input data; however, mathematical ROP models can predict the ROP in all ranges, and they need less 

input data compared to ANFIS. 

Overall, it can be seen that Bourgoyne and Young model has a better performance than the Hareland-

Rampersad model in most of the formations. Since the effect of different parameters such as pore 

pressure, mud weight, flow rate, and bit nozzle size are considered in Bourgoyne and Young model, it 

works better than Hareland-Rampersad model in the prediction of drilling ROP. 

 

Figure 14 

Measured and predicted drilling rates using different approaches. 
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Figure 15 

Residual errors of predicted values by ANFIS, Bourgoyne and Young, and Hareland models. 

On the other hand, Hareland-Rampersad model is more accurate than Bourgoyne and Young model in 

Upper-limestone and Surmeh formations as can be seen in Table 10. In these formations, the pore 

pressure, mud weight, and mud flow rate have very little variations, while the uniaxial compressive 

strength (UCS) of these formations is variable. The Hareland-Rampersad model considers the effect 

of UCS, which has a significant impact on the rate of penetration, whereas the Bourgoyne and Young 

model considers a constant value of drillability for these formations. For this reason, the Hareland-

Rampersad model has a better prediction performance than Bourgoyne and Young model for those 

two formations. It can be concluded that Hareland-Rampersad ROP model in formations where the 

pore pressure, flow rate, and mud weight do not vary significantly is a more appropriate choice 

compared to the Bourgoyne and Young model; nevertheless, both are inferior to the ANFIS ROP 

model developed here. 

Table 10 

Average percentage error for ANFIS, Bourgoyne and Young, and Hareland-Rampersad models for each 

formation. 

Formation type ANFIS model (%) Bourgoyne and Young model (%) Hareland model (%) 

Asmary 3.75 36.91 43.49 

Ilam 3.01 13.93 17.96 

Sarvak 10.79 14.88 23.97 

Upper-limestone 0.75 10.18 9.73 

Dashtak 8.01 9.17 13.99 

Surmeh 9.64 15.15 12.45 

Kangan 6.32 14.44 16.24 

7. Conclusions 

In this study, the adaptive neuro-fuzzy inference system and two most-widely used mathematical ROP 

models (i.e. Bourgoyne and Young and Hareland-Rampersad models) are used to predict the rate of 

penetration in the SP gas field. A comparison of the results suggests the following conclusions: 

 When a few numbers of input data are available, the ANN cannot be used for the prediction 

of ROP. ANFIS uses a combination of fuzzy logic and neural network, which helps ANFIS to 
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have a better performance than ANN, especially when a few numbers of input data are 

available.  

 ANFIS is an accurate tool for the prediction of ROP, but the performance of ANFIS depends 

on various factors such as the number, accuracy, and distribution of input data and the type of 

membership functions. Since there is no direct way to determine the proper membership 

functions, trial and error should be used for this purpose. It is worth noting that this method is 

time consuming, especially when the number of input variables increases, and sometimes it is 

not possible to construct a reliable model for the prediction of ROP using ANFIS.  

 Although mathematical ROP models are less accurate than ANFIS, they need less data to be 

constructed and always provide a reasonable estimation of ROP. Therefore, it is better to use 

ANFIS and mathematical ROP models simultaneously for the prediction of drilling rate in a 

particular formation. 

 Overall, Bourgoyne and Young model has better performance than Hareland-Rampersad 

model in the prediction of drilling rate.  

 In formations where some parameters such as mud weight, mud flow rate, and pore pressure 

gradients do not change significantly, Hareland-Rampersad model is a better choice for the 

prediction of drilling ROP compared to Bourgoyne and Young model. 
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Nomenclature 

ANFIS : Adaptive neuro-fuzzy inference system 

ANN : Artificial neural network 

BG : IADC bit dull grading 

BY : Bourgoyne and Young model 

𝐶𝑎 : Bit wear coefficient 

D : True vertical depth (ft.) 

db : Bit diameter (in) 

E : Energy function 

ECD : Equivalent circulation density (ppg) 

f : Bourgoyne and Young model functions 

FIS : Fuzzy inference system 

Fj : Jet impact force (lbf) 

G : Constant coefficient of Hareland model 

h : Bit wear 

HR : Hareland model 

L : Length of Markov chain 

N : Rotary speed at Bourgoyne and Young model (rpm) 

O : Output of each node in ANFIS 

ROP : Rate of penetration (ft./hr.) 

RPM : Rotary speed (rpm) 

SAA : Simulated annealing algorithm  

T0 : Initial temperature (°C) 

Tf : Freezing temperature (°C) 
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UCS : Uniaxial compressive strength of the rock (psi) 

wf : Wear function 

WOB  : Weight on bit (klb) 

X,y : Variables  

𝑎 : Constant coefficients of Bourgoyne and Young model 

𝛼 : Temperature decrement factor at SAA 

𝛼 & 𝛾 : Hareland model constants 

𝜇 : Membership function 

𝜎 : Uniaxial compressive strength of the rock (psi) 
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