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Abstract 

Production strategy from a hydrocarbon reservoir plays an important role in optimal field 

development in the sense of maximizing oil recovery and economic profits. To this end, self-

adapting optimization algorithms are necessary due to the great number of variables and the 

excessive time required for exhaustive simulation runs. Thus, this paper utilizes genetic algorithm 

(GA), and the objective function is defined as net present value (NPV). After developing a suitable 

program code and coupling it with a commercial simulator, the accuracy of the code was ensured 

using a synthetic reservoir. Afterward, the program was applied to an Iranian southwest oil 

reservoir in order to attain the optimum scenario for primary and secondary production. Different 

hybrid water/gas injection scenarios were studied, and the type of wells, the number of wells, well 

coordination/location, and the flow rate (production/injection) of each well were optimized. The 

results from these scenarios were compared, and simultaneous water and gas (SWAG) injection 

was found to have the highest overall profit representing an NPV of about 28.1 billion dollars. The 

application of automated optimization procedures gives rise to the possibility of including 

additional decision variables with less time consumption, and thus pushing the scopes of 

optimization projects even further. 

Keywords: Optimization, Production Optimization, Well Placement, Genetic Algorithm 

1. Introduction 

Selecting an optimum choice for the development of a hydrocarbon reservoir requires a full 

understanding of the variations in costs and incomes caused by changing a production scenario. The 

optimal development of an oil field requires the study and evaluation of many parameters, including 

reservoir characterization, drilling locations, and production strategy. Using common exhaustive 

simulations does not seem reasonable due to the large amount of information and the huge number of 

variables involved. 

Genetic algorithm (GA) is a technique for search and optimization, which is based on genetic 

principles and natural selection. GA provides the opportunity for constructing a population of 

individuals with different characteristics, and among this population, selecting the people who are the 
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fittest for the desired purpose (the ones with the least cost). This method was introduced and 

developed by Holland (1973) and was finally completed and published by Goldberg (1985), where 

GA was used for flow control in gas pipelines. 

Lang and Horne (1983) considered production parameters such as gas injection rate (in gas lift 

operations) and downhole flowing pressure as decision parameters for maximizing oil production, 

through GA, with respect to the reservoir conditions and physical constrains such as the capacity of 

pipelines and wellhead facilities. The applications of GA in oil industry were briefly addressed by 

Jefferys (1993). The discussed cases, including the optimization of drilling operations, casing running 

operations, production planning, and the optimal method for mixing different types of crude oil in 

order to provide the suitable feed for refineries, etc. Moreover, the possibility of using these 

algorithms in such cases was examined, and the advantages and disadvantages of each algorithm were 

evaluated. 

The pioneers of GA application in well placement optimization were Bittencourt and Horne (1997). 

They combined economic and simulation studies with evolutionary hybrid genetic algorithms (HGA) 

using polytope search. Objective functions based on net present value (NPV) coupled with HGA 

techniques were employed to calculate well location, well type, well number, and drilling direction (in 

horizontal wells) in oil and gas fields. Pan and Horne (1998) used the least squares and kriging 

interpolation algorithms for scheduling field development and a water injection project with the aim 

of reducing the number of simulations and obtaining the optimal strategy. Their results indicated a 

significant reduction in the number of simulations required, and they chose their final and optimal 

strategy by interpolating between the objective function values obtained from these simulations. 

Due to the high simulation runtime required by the commercial software, Stoisits et al. (1999) decided 

to use artificial neural networks instead of the objective function, and used a genetic natural selection 

process to solve the nonlinear allocation problem. They successfully optimized the wellhead facilities, 

flow pipelines, and the well performance model for Kuparuk River field in northern Alaska. 

Güyagüler (2002) addressed data uncertainty and optimized the locations of the injection wells in 

Pompano oil field in the Gulf of Mexico. Through using HGA and kriging algorithm, simulation time 

was reduced significantly and the maximization of NPV was made possible. The outcomes were also 

evaluated and verified in comparison to exhaustive simulation results. 

Determination of the optimal parameters of nonconventional wells was presented by Yeten et al. 

(2003) using GA in association with other acceleration routines. In their research, they defined an 

objective function consisting of NPV and attempted to optimize the type, number, location and 

trajectory of these wells by incorporating HGA. Furthermore, uncertainty effect was taken into 

account via a multiple realization approach. Badru and Kabir (2003) also conducted optimization on 

well positioning in water and gas injection processes using HGA with polytope algorithm as the 

assisting method. Their results showed that in a synthetic reservoir, horizontal wells have a higher 

recovery compared to vertical wells. However, in real reservoirs, the lower the parameter Kv/Kh was, 

the lower the marginal profit of the horizontal wells was. Xuefei and Mohanty (2003) presented a 

method for the proper analysis of the production history as a substitute for automatic history matching 

by using GA. The provided objective function was an error function consisting of the differences 

between the calculated and experimental values of the reservoir production. A good match was 

obtained for primary drainage at low injection rates. 

Time-dependent information was used along with HGA in the work of Özdoğan (2004) for 

uncertainty reduction. In their method, the production data are obtained while the wells are being 

drilled, and they are taken into account for further decision-making. Therefore, unlike previous 
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approaches, history matching gradually becomes more effective in the optimization of the well 

placements. Due to the presence of production data, uncertainties about the optimization are also 

reduced at each step of the optimization. In another work, Tavakkolian et al. (2004) introduced a 

novel stochastic method through which they optimized the oil and gas-condensate production systems. 

Their approach made it possible to achieve the optimal values for a function with a great number of 

decision variables in such a way that the highest amount of economic benefit could be attained. Their 

GA-based method first used a mathematical equation to optimize wellhead facilities; then, the results 

were analyzed and re-optimized to increase profitability. As the output of the program, the parameters 

to which the optimization was applied consisted of tubing (single or dual) size and depth, choke size, 

the number of separators, and the pressure of the separators. 

The uncertainties associated with field development may be technical, which is related to size and 

quality of the reserve, or may be in accordance with market conditions. When there exists many 

different choices for investment, deciding on the most suitable option will be extremely difficult due 

to the high number of possibilities and parameters involved in the calculations. Lazo et al. (2007) 

attempted to optimize decision making under the conditions of market uncertainty by incorporating 

real option theory, Monte Carlo simulation, and genetic algorithm. 

Zarei et al. (2008) utilized HGA with a neuro-fuzzy system, which acts as a proxy for the optimization 

process. The network is selected as the objective function, and the algorithm obtains the objective 

function value for various chromosomes. They performed their study using a synthetic reservoir and 

realized that HGA has higher reliability and speed in comparison with GA and non-proxy approaches. 

Nogueira and Schiozer (2009) addressed production strategy optimization using GA in two exclusive 

cases with only vertical and horizontal wells. After investigating the two situations, they concluded 

that implementing horizontal wells results in a higher NPV and specified the optimal number and 

location of the wells. 

Bukhamsin et al. (2010) coupled continuous type GA with dynamic mutation and hill climbing 

technique to enhance the performance in obtaining the optimal design of the multilateral wells. Their 

results were applied to the development of a heterogeneous carbonate reservoir in Saudi Arabia. 

Moreover, the continuous GA was found to be more robust than the usual binary genetic algorithms. 

Morales et al. (2010) attempted to optimize the location of horizontal wells in a gas-condensate 

reservoir model from a northern Qatar field under several case scenarios. It was discovered that the 

location of horizontal wells is not a significant factor in cumulative gas production as it is in oil fields. 

Additionally, they noted that convergence to global maximum could be challenging due to the 

surrounding local maxima. 

Optimization of CO2 flooding performance in a real reservoir in the presence of financial and physical 

uncertainties was reported by Chen et al. (2010), where they used a modified GA along with the 

geostatistical technique for risk assessment and NPV maximization. Gas injection rate and flowing 

downhole pressure in production wells were the selected controlling variables. As a result, ultimate 

recovery and NPV were both increased, and the efficiency and reliability of genetic algorithm was 

confirmed. 

In a review study, Nasrabadi et al. (2012) examined different methods of optimizing well placement 

and addressed the shortcomings of the existing methods in the literature. They stated that although 

GA produces reliable outcomes, it still requires a considerable number of simulation runs. The authors 

further discussed the inefficiency of the conventional finite difference techniques in commercial 

simulators as well as the necessity of more attention to gas reservoirs and tertiary methods of oil 

recovery. 
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Salmachi et al. (2013) constructed a framework to find the optimal placement of infill wells in coal 

bed methane fields. A semi-synthetic reservoir was used for this purpose. It was found that the key 

parameter controlling the location of infill wells and thus the profitability of the project is the cost of 

water treatment and disposal.  

Wang et al. (2014) used a sector model to validate enhanced oil recovery (EOR) results on a field 

scale by using a sector model at Chevron Corporation. This sector model covers 1/6 of the field area 

and includes natural fractures, plant capacity limitations, complex production rules, existing sour gas 

injection, and high well count. Their work presents a method to model full field performance and to 

finally generate suitable predictions. 

Seyed-Attar et al. (2015) reported that a proper field development strategy is an integrated, multi-

disciplinary task mainly during gas injection scenario in asphaltenic oil reservoirs. In their study, 

based on the parameters obtained from the experimental studies, asphaltene precipitation and 

deposition are investigated by a commercial simulator. Then, after suggesting a comprehensive 

development plan, the effect of asphaltene deposition on fracture parameters is quantified. 

At Shell, Liping Jia et al. (2015) used a sector modeling to identify and rank different aspects of CO2 

injection in an oil field with 500 wells, 70 years of historical production, and water injection. 

In a recent work, Sambo et al. (2016) applied adaptive GA to an infill-drilling program. After history 

matching, the optimization results were compared to those of the exhaustive design of expert 

methods. genetic algorithm successfully maximized recovery at a significantly higher speed and 

proved to be a useful tool, especially when compositional simulations are required. 

2. Methodology 

This paper intends to address the optimization of the number and location of the wells, whether 

production or injection, as well as their rates, under certain scenarios by means of GA for one of Iran 

southwest reservoirs. In the optimization process, a connection is established between the GA 

optimizer engine in MATLAB and a commercial simulator for several times. The two sections are 

coupled and made completely compatible with each other to perform the optimization on the specified 

reservoir without any problem. 

After ensuring the accuracy of the code using a synthetic reservoir, natural production scenario from 

the real reservoir is investigated. The goal is to find the optimal placement and production rate of the 

wells in order to increase the oil production. Later, after the initial reservoir pressure drops and the 

need for secondary recovery (e.g. additional injection wells) arises, we attempt to find the optimum 

location and injection rate for the new wells under several scenarios in order to extend the reservoir 

lifespan and to obtain the highest oil recovery. Ultimately, the values for NPV from different 

scenarios are compared, and the optimum strategy is reported. This process is illustrated in Figure 1. 

The overall procedure for the optimization in any genetic algorithms is also shown in Figure 2. 
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Figure 1 

Flow chart of optimization process in the current work. 

 

 

Figure 2 

Flow chart of GA optimization procedure (Bukhamsin et al., 2010). 

The basic theoretical background information on optimization using GA is presented in the following 

sections. 

2.1. Optimization 

Optimization is the process of adjusting the inputs of a device, a mathematical equation, or an 

experimental process with the aim of finding the maximum or minimum value in the output or 

solution. Due to the presence of many different variables, the lack of analytical solutions in most 

cases, and the nonlinearity of the reservoir development, the applications of gradient-based methods 

are limited; therefore, the use of random search tools seems necessary in problems with this level of 

complexity. GA is one of the most common algorithms which lies in this category. Another advantage 

of this method is that it can easily be combined with other algorithms and can also be used in parallel 

making up hybrid genetic algorithms. 

The most important and basic type of genetic algorithms is the binary GA, in which the variables are 

coded in a binary form. In this algorithm, each variable is known as a chromosome, and a set of 

variables constitutes the initial population. In other words, chromosomes are made up of a string of 

zeros and ones (corresponding to the coordinates of each cell), and then they are randomly chosen and 

put together in different rows which constitute the population matrix. Thereupon, the objective 

function is calculated for each member, and a level of fitness is attributed to the selected 
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chromosomes. In the next step, natural selection—for the survival of a population’s individuals to 

form the next generation—occurs among those who have the minimum cost, whereas the rest of the 

chromosomes will be excluded from the population.  

2.2. Crossover 

In this step, two chromosomes which have a parent role and are selected based on their probability 

proportional to their relative fitness in the previous generation, are broken from some point (crossover 

point) and exchanged so that two new chromosomes (offsprings) could be produced as illustrated in 

Figure 3. 

 

Figure 3 

Combination/crossover process. 

2.3. Mutation 

Subsequent to the crossover, mutation occurs. Mutation is another way by which GA evaluates the 

cost function. To account for genetic diversity, single point mutation switches a random digit from 0 

to 1 or vice versa, thereby forming the new chromosomes of the next generation and causing radical 

changes in the population. The mutation process is illustrated in Figure 4. 

 

Figure 4 

Mutation process. 
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After the population is completely constructed, the cost function associated with the offspring is 

calculated. The results of this stage are used as the initial population in the next step. This whole 

process would be repeated until the final stage is reached, that is, one of the termination conditions for 

the GA is established. 

2.4. Termination conditions for GA 

There are different approaches to finishing an optimization algorithm. The following methods can be 

the suitable options for such conditions: 

 Reaching a certain number of generations; 

 Completely using the allocated budget (computation time/money); 

 Finding an individual (child solution) which meets the minimum criteria; 

 Obtaining the maximum degree of fitness for the children, or when no other, better results can 

be achieved. 

In the following sections, the application of GA in the current work is investigated, and the 

conditions, variables, constraints, and objective function used for the reservoir under study are 

provided. Furthermore, the validity of the code is verified using a synthetic reservoir. 

2.5. Optimization variables 

The selected optimization variables, while not depending on each other, must be in a very strong 

correlation with the objective function. Moreover, their count must also be low since the lower the 

number of the variables of a problem is, the lower its complexity is. The parameters optimized in this 

study are the number of wells, well coordination/location, the flow rate (production/injection) of each 

well, injection fluid, and the suitable EOR scenario to be used for ultimate recovery maximization. 

However, optimization with GA is performed on three basic variables. The first two independent 

variables are the number of reservoir grids in the i and j directions. Since all the wells drilled in the 

field development phase are vertical and completed in all layers, grids in the k direction were not 

considered. The third variable is the production/injection rate of the wells. As for the rest of the 

parameters (optimal number of wells, injection fluid, and EOR scenario), the optimum state is found 

by changing the variables one by one, repeating the optimization process, and comparing the different 

conditions to find the situation which yields the highest NPV. 

2.6. Establishing the initial population 

In order to increase the convergence speed of the program in reaching the optimum solution, a series 

of restrictions were defined for the genetic algorithm and the commercial simulator as follows: 

a. Constraints applied to GA 

 1 < X < The number of grids in i direction; 

 1 < Y < The number of grids in j direction; 

 1 < n < The number of layers; 

 Production and injection wells should not both be placed in the same grid; 

 No similar chromosomes should be produced within a population: 

 Since the calculation of the objective function is time consuming, the chromosomes of the 

previous population should not be entered into the objective function. 
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b. Constraints applied to the commercial simulator 

 Maximum oil production rate is 10 Mbbl/day; 

 Maximum water injection rate is 12 Mbbl/day; 

 Maximum gas injection rate equals 40 MMscf/day; 

 Maximum GOR allowed for each well equals 10 Mscf/stb; 

 Maximum WC allowed for each well is 0.3 before water injection and 0.8 after water 

injection; 

 Minimum production rate from each well equals 500 bbl/day. 

2.7. Definition of the objective function 

In the optimal development of oil fields, parameters such as cumulative oil production or NPV are 

usually regarded as the objective function. In certain cases, however, other functions may also be 

taken into account. For instance, the objective function could be defined as the minimum water-cut, 

the minimum produced gas, the minimum amount of injected water and gas, etc. 

The objective function assigns a quantitative measure to a set of specific values for the variables 

(chromosomes). By incorporating the objective function, the optimization algorithm leads to 

improving the variables in order to achieve the optimal value for the objective function. The objective 

used in this work was considered to be the project net profit defined as: Net profit = Total revenue – 

Total expenses. 

The earnings in this study are comprised of proceeds from sales of oil, gas, and condensates (if 

available). Moreover, the expenses include drilling costs, water and gas injection costs, repair and 

maintenance, and costs associated with the water disposal of the product. The economic model used in 

this work is based on the work of Yeten (2003), in which NPV is calculated according to a constant 

annual effective discount as given below: 

    [∑ ∑
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where,   stands for annual percentage rate (inflation rate), and   is the total number of discount years. 

  
  represents the rate of the production or injection of phase p (oil, gas, or water) in year n, and    is 

the revenue/cost per barrel of cubic feet of phase p (oil, water, or gas);   ,    , and        stand for 

the total cost of drilling, operating costs, and capital expenditures of the well (tax expenses) 

respectively.        and        also represent the total drilling length of the nth well and price per each 

foot of drilling respectively.  

It should be noted that the coefficient of    is the interest rate (positive value) when the production 

phase is oil or gas, and it is the price index (negative value) either when the production phase is water 

or when gas or water are being injected. To calculate the exact value of the abovementioned objective 

function, one should predict the inflation rate in the following years, which is very difficult and needs 

to be managed by an economist. Therefore, the incomes and expenses were calculated based on year 

2012, and an average of 10% was chosen for the inflation rate. The costs and incomes involved are 
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presented in Table 1. In each simulation run,    is calculated according to the depth of each well and 

the given values of        and        (Equation (2)). NPV is then calculated using Equation (1) by 

regarding the injection rates given as the inputs, the production rates obtained from the simulation 

outputs,    of each flowing phase, total simulation time ( ), inflation rate ( ),    , and calculated   . 

2.8. Validity verification of the optimization program  

For any program which optimizes a specific process, one must ensure the validity of the optimization 

procedure; this rule stands true for GA as well. To validate the program and to ensure that the 

algorithm converges to the optimum answer, a simple homogeneous and isotropic reservoir was 

assumed. Table 2 lists the properties of this reservoir. It is intended that eight production wells and 

one injection well are drilled in this hypothetical reservoir, so the maximum net profit is obtained. It is 

known that for a homogeneous and isotropic reservoir, the situation where the injection well is at the 

center and the production wells are around the reservoir yields the optimum solution. To confirm the 

validity of the optimization program, the locations of the production wells were kept fixed in grids 

(1,1), (21,1), (1,21), (21,21), (11,21), (21,11), (11,1), and (1,11), but the location of the injection wells 

was regarded as the variable. This arrangement is illustrated in Figure 5. 

Table 1 

Economic parameters used for NPV calculations; the values are based on the economic conditions of year 2012 

and experience in the field under study. 

Economic parameter Value 

Revenue from oil sales (    ) $50/bbl 

Revenue from gas sales (    ) $1/Mscf 

Cost of water production (    ) $10/bbl 

Cost of water Injection (       ) $5/bbl 

Cost of gas injection (       ) $1/Mscf 

Cost of well drilling  (      ) $200/ft 

Operating costs for each well (   ) $100/day 

Inflation rate ( ) 10% 

Taxes (      ) $0/well 

GA was used to find the optimal location of the injection well. Each individual of the population 

consisted of two variables x and y, where 1<x and y<21. After running the simulation for all the 

chromosomes, the net profit associated with the corresponding chromosomes was calculated. The 

program was implemented and was successful in determining the best location of the injection well 

(grid (11,11)). It can be seen in Figure 6 that GA attains the answer after 15 generations; thus, the 

ability of the algorithm to find the optimal solution is approved. 
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Figure 5 

Locations of the production wells in the hypothetical model. 

Table 2 

Properties of the hypothetical reservoir. 

Property Value 

Number of grids in x direction 21 

Number of grids in y direction 21 

Number of grids in z direction 10 

Grid length in x direction 200 ft 

Grid length in y direction 200 ft 

Grid length in z direction 70 ft 

Depth of the top layer of the reservoir 6000 ft 

Porosity 0.25 

Permeability 50 mD 

Rock compressibility 0.00004 psi
-1

 

Oil density 45 lb./ft
3
 

Water density 63 lb./ft
3
 

Well diameter 0.5 ft 

Active phases Oil and water 
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Figure 6 

Maximum net profit gained in the hypothetical model. 

3. Results and discussion 

The reservoir model used in this study is a portion of one of the Iran southwest oil reservoirs. The 

reservoir is initially at 5620 psi and is located at the average depth of 11000 ft. Its dimension in x, y, 

and z directions is 16000, 16600, and 900 feet respectively with a pore volume of 10.5×10
9
 cubic feet. 

The reservoir rock has connate water saturation of 35%, average porosity of 9%, and horizontal 

permeability of 15 mD. The reported density of the reservoir oil is also 31 ºAPI. The characteristics of 

the reservoir are listed in Table 3. 

Table 3 

Characteristics of the real reservoir. 

Property Value 

Initial reservoir pressure 5620 psi 

Average depth of the top layer 11000 ft 

Average horizontal permeability 15 mD 

Average vertical permeability 5 mD 

Average porosity 0.09 

Pore volume 10.5×10
9
 ft

3
 

Initial oil saturation 0.65 

Total number of blocks 20×20×20 

Number of active blocks 3868 

Dimensions in x, y, and z  16000, 16600, and 900 ft 

Average block size (x, y, and z) 800, 830, and 45 ft 

Oil density 31 ºAPI 

Figure 7 depicts an overall schematic of the fluid distribution in the reservoir. It can be inferred from 

the fluid distribution that the reservoir has neither a significant gas cap nor an aquifer. Therefore, gas 

cap and water drive mechanisms are unlikely, and solution gas drive is probably the main mechanism 

of oil production. Consequently, after the natural production period ends and reservoir pressure drops 

below economic production threshold, the most proper and widely used scenarios for EOR is the 

injection of water, gas, or a combination of both (simultaneous water and gas injection). Hence, these 
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scenarios are investigated and considered for the optimization study. To this end, the project is 

optimized in two parts. 

 

Figure 7 

Fluid distribution in the real model. 

3.1. Natural production 

In this part, the optimization is carried out on the number, the location, and the production rate of 

wells, while no injection wells have yet been drilled. This scenario is maintained until the reservoir 

pressure reaches 70% of its initial value, which indicates an appropriate time for ending the reservoir 

natural production and employing primary and secondary EOR techniques according to previous full 

field studies. The optimized parameters in this scenario are as follows: 

 Grid number of the well drilled in the i direction; 

 Grid number of the well drilled in the j direction; 

 Production rate from each well (Qp). 

This scenario was repeated for four, five, six, seven, and eight production wells, and the obtained 

results revealed that the highest net profit is gained in the case of six drilled wells (Figure 8). Table 4 

lists the optimum rate and coordinates for each well.  

Table 4 

Optimized well locations and flow rates in the natural production mode. 

Well ID X Y Rate (bbl/day) 

Production 1 4 4 3528 

Production 2 13 4 4927 

Production 3 16 4 7943 

Production 4 7 13 3567 

Production 5 11 17 7426 

Production 6 16 17 5354 
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Figure 8 

The comparison of NPV among different numbers of production wells. 

3.2. Application of EOR methods 

In the second part of the project, three different EOR scenarios are implemented with the aim of 

maximizing the ultimate recovery through drilling new injection wells. The number, the location, and 

the injection rate of the injection wells are to be optimized using GA, and the production rates of the 

existing wells are re-optimized. 

a. First scenario: water injection 

By injecting water, in addition to maintaining the reservoir pressure, the sweep efficiency is also 

improved. The optimization parameters in this scenario are the following: 

 Grid number of the injection well to be drilled in the i direction; 

 Grid number of the injection well to be drilled in the j direction; 

 Rate of production wells (Qp); 

 Water rate in water injection wells (Qiw). 

This scenario was executed for up to four injection wells, and the results (see Figure 9) demonstrates 

that the maximum net profit is gained for the case of six production wells and three injection wells. 

Table 5 also tabulates the optimized characteristics of each well. 

 

Figure 9 

The comparison of NPV among different numbers of water injection wells. 
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Table 5 

Optimized locations and flow rates of wells in the water injection scenario. 

Well ID X Y Production rate (bbl/day) Injection rate (bbl/day) 

Production 1 - - 7498 - 

Production 2 - - 7763 - 

Production 3 - - 7607 - 

Production 4 - - 7424 - 

Production 5 - - 7507 - 

Production 6 - - 4911 - 

Injection 1 3 10 - 9016 

Injection 2 9 9 - 10748 

Injection 3 17 14 - 7149 

b. Second scenario: gas injection 

This scenario implements gas injection to the reservoir, and the optimized parameters considered are 

as follows: 

 Grid number of the injection well to be drilled in the i direction; 

 Grid number of the injection well to be drilled in the j direction; 

 Rate of production wells (Qp); 

 Gas rate in gas injection wells (Qig); 

Several optimization runs were performed for one, two, three, and four gas injection wells, and, as can 

be seen in Figure 10, a combination of six production wells and three injection wells leads to the 

highest net profit. The specifications of the well are summarized in Table 6. 

 

Figure 10 

The comparison of NPV among different numbers of gas injection wells. 
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Table 6 

Optimized locations and flow rates of wells in the gas injection scenario. 

Well ID X Y Production rate (bbl/day) Injection rate (Mcf/day) 

Production 1 - - 7794 - 

Production 2 - - 7825 - 

Production 3 - - 7458 - 

Production 4 - - 7190 - 

Production 5 - - 7879 - 

Production 6 - - 4308 - 

Injection 1 3 10 - 22930 

Injection 2 11 14 - 28275 

Injection 3 17 11 - 24700 

c. Third scenario: simultaneous water and gas injection (SWAG) 

In SWAG, water is injected from the upper reservoir blocks, and gas is injected from the lower blocks 

of an injection well. The optimized parameters of SWAG scenario include: 

 Grid number of the injection well to be drilled in the i direction; 

 Grid number of the injection well to be drilled in the j direction; 

 Rate of production wells (Qp); 

 Water rate in water injection wells (Qiw); 

 Gas rate in gas injection wells (Qig); 

SWAG was similarly performed for up to four injection wells, and the results obtained show that the 

highest net profit is gained for six production and three injection wells in the model (Figure 11). Table 

7 also lists the optimum rates and coordinates of the wells in simultaneous water and gas injection 

scenario. Moreover, compared to the previous scenarios, the greatest net profit was gained in the case 

of SWAG. The comparison of NPV among various scenarios is demonstrated in Figure 12. 

 

Figure 11 

The comparison of NPV among different numbers of injection wells in SWAG. 
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Table 7 

Optimized locations and flow rates of wells in the SWAG scenario. 

Well ID X Y 
Production rate 

(bbl/day) 

Water injection rate 

(bbl/day) 

Gas injection rate 

(Mcf/day) 

Production 1 - - 7559 - - 

Production 2 - - 7623 - - 

Production 3 - - 6822 - - 

Production 4 - - 7017 - - 

Production 5 - - 7648 - - 

Production 6 - - 7748 - - 

Injection 1 4 16 - 5405 15644 

Injection 2 10 13 - 5833 15708 

Injection 3 15 12 - 8528 21481 

 

Figure 12 

The comparison of project profitability (NPV) among various scenarios of water injection, gas injection, and 

SWAG by implementing six production wells and three injection wells. 

4. Conclusions 

One of the most important concerns about managing hydrocarbon reservoirs is the optimization of the 

location, the type, the number, and the rate of injection and production wells during EOR processes. 

In this study, after preparing the general framework of the optimization process by utilizing genetic 

algorithm and validating it using a synthetic reservoir model, a real reservoir was optimized. The 

location, the number, and the flow rate of the wells, including both production and injection wells, 

were optimized for a reservoir in the southwest of Iran. The results indicate that the maximum net 

profit is gained in case of six production well and three injection wells during a simultaneous water 

and gas injection scenario with an NPV equal to 28.1 billion dollars. 

Moreover, genetic algorithm proved to be a useful tool for managing reservoir decision making and 

optimizing the location and flow rates of wells in order to achieve the maximum ultimate recovery 

and thus the highest economic profit. However, the current work has focused on optimizing the 

locations and flow rate of wells using GA, and other decision making variables, including 
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horizontal/vertical wells, injection intervals, different EOR methods, and the optimum time of 

applying any scenario should be taken into account in future works.  

Nomenclature  

Abbreviations  

EOR Enhanced oil recovery 

GA Genetic algorithm 

GOR Gas/oil ratio 

HGA Hybrid genetic algorithm 

NPV Net present value 

SWAG Simultaneous water and gas 

WC Water-cut 

Symbols  

      , Capital expenditures of the well (tax expenses) 

  , Total cost of drilling of the well 

      , Price per each foot of drilling 

   , Operating costs of the well 

  , Revenue/cost per barrel of cubic feet of phase p (oil, water, or gas) 

 , Annual percentage rate (inflation rate) 

      , Total drilling length of the nth well 

  
 , Rate of production or injection of phase p (oil, gas, or water) in year n 

 , Total number of discount years 

Units  

ºAPI American Petroleum Institute gravity 

bbl. Barrels 

ft. Feet 

lb. Pound mass 

mD Milli-Darcies 

psi Pound force per square inch 

scf Standard cubic feet 

stb Stock tank barrel 
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